Arc length of a curve - in Polar coordinates

Some curves are more conveniently given in polar form - that is, as functions of the angle swept out from the x-axis (in an anti-clockwise direction) and the distance from the origin.

The function is expressed as a relationship between r and θ.
Our task is to find the length of this curve between two points P and Q.

δ

We derive this formula in the usual way by dividing the curve into segments and approximating each segment by a straight line.

Consider one such argument of length δs.

As the angle θ is increased by $\delta \theta$, the distance of the curve from the origin changes by δr from r to $r+\delta r$.

To find an expression for δs we construct a right-angled triangle, thus

§8

Then $\delta s=\sqrt{(P Z)^{2}+(Z Q)^{2}}$
Now $P Q$ is approximately equal to the arc length given by $r \delta \theta$.
This approximation would be exact if we took the limit; that is $\delta \theta \rightarrow 0$.
The length $P Z$ is the change in the r coordinate, i.e. $P Z=\partial r$. Hence,
$\delta s=\sqrt{(r \delta \theta)^{2}-(\delta \theta)^{2}}$
And in the limit the "infinitesimal" increase in arclength, $d s$, is given by: You should remove the reference to infinitessimal.

$$
\begin{aligned}
& d s=\sqrt{r^{2}(d \theta)^{2}+(d r)^{2}} \\
& =\left\{\sqrt{\frac{r^{2}(d \theta)^{2}}{(d \theta)^{2}}+\frac{(d r)^{2}}{(d \theta)^{2}}}\right\} \cdot d \theta \\
& =\left\{\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}}\right\} \cdot d \theta
\end{aligned}
$$

The arclength is given by the sum of small segments ∂s. Hence,
$s \approx \sum_{\theta_{1}}^{\theta_{2}} \delta s$

Hence: $s=\int_{\theta_{1}}^{\theta_{2}}\left\{\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}}\right\} \cdot d \theta$
This is the arclength formula in polar coordinates.

Example

Find the length of the cardioid with equation

$$
r=a(1-\cos \theta)
$$

Solution

We visualise the cardioid by the usual technique of evaluating points and sketching

θ	0	$\pi / 4$	$\pi / 2$	$3 \pi / 4$	π	$5 \pi / 4$	$3 \pi / 2$	$7 \pi / 4$	2π
$\cos \theta$	1	$1 / \sqrt{2}$	0	$-1 / \sqrt{2}$	-1	$-1 / \sqrt{2}$	0	$1 / \sqrt{2}$	1
$1-\cos \theta$	0	$\sqrt{2}-1 / \sqrt{2}$	1	$1+\sqrt{2} / \sqrt{2}$	2	$1+\sqrt{2} / \sqrt{2}$	1	$\sqrt{2}-1 / \sqrt{2}$	0

This gives us the cardioid:-

We are finding the line length as the angle sweeps out from 0 to 2π.

$$
\begin{aligned}
& r=a(1-\cos \theta) \\
& \frac{d r}{d \theta}=a \sin \theta \\
& s=\int_{0}^{2 \pi}\left\{\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}}\right\} \cdot d \theta \\
&=\int_{0}^{2 \pi} \sqrt{(a(1-\cos \theta))^{2}+(a \sin \theta)^{2}} \cdot d \theta \\
&=\int_{0}^{2 \pi} \sqrt{a^{2}\left(1-2 \cos \theta+\cos ^{2} \theta\right)+a^{2} \sin ^{2} \theta} \cdot d \theta \\
&=a \int_{0}^{2 \pi} \sqrt{1-2 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta} \cdot d \theta \\
&=a \int_{0}^{2 \pi} \sqrt{2-2 \cos \theta} \cdot d \theta
\end{aligned}
$$

We recall that since $\cos 2 A=\cos ^{2} A-\sin ^{2} A=1-2 \sin ^{2} A$ that $\cos \theta=1-2 \sin ^{2}(\theta / 2)$
Therefore

$$
\begin{aligned}
s & =a \int_{0}^{2 \pi} \sqrt{2-2\left(1-2 \sin ^{2}(\theta / 2)\right)} \cdot d \theta \\
& =a \int_{0}^{2 \pi} \sqrt{4 \sin ^{2}(\theta / 2)} \cdot d \theta \\
& =2 a \int_{0}^{2 \pi} \sin (\theta / 2) \cdot d \theta \\
& =2 a[-2 \cos (\theta / 2)]_{0}^{2 \pi} \\
& =4 a(-\cos \pi+\cos 0) \\
& =4 a(1+1)=8 a
\end{aligned}
$$

