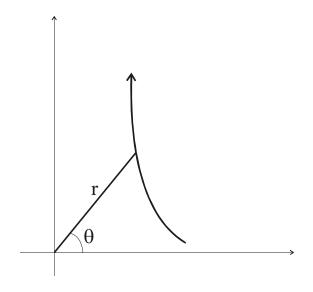
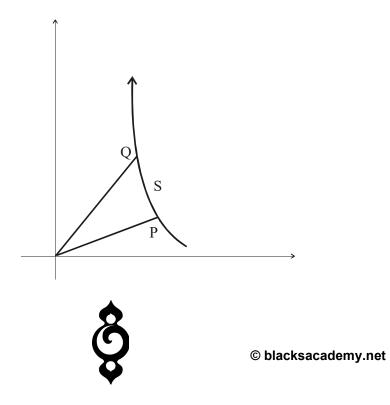
Arc length of a curve – in Polar coordinates

Some curves are more conveniently given in polar form – that is, as functions of the angle swept out from the *x*-axis (in an anti-clockwise direction) and the distance from the origin.



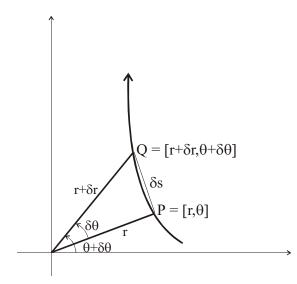
The function is expressed as a relationship between r and θ .

Our task is to find the length of this curve between two points P and Q.



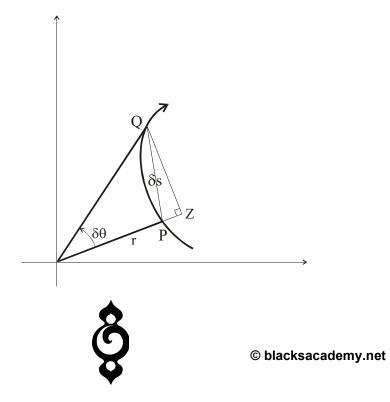
We derive this formula in the usual way by dividing the curve into segments and approximating each segment by a straight line.

Consider one such argument of length δs .



As the angle θ is increased by $\delta\theta$, the distance of the curve from the origin changes by δr from r to $r + \delta r$.

To find an expression for δs we construct a right-angled triangle, thus



Then $\delta s = \sqrt{(PZ)^2 + (ZQ)^2}$

Now PQ is approximately equal to the arc length given by $r\delta\theta$.

This approximation would be exact if we took the limit; that is $\delta\theta \to 0$.

The length *PZ* is the change in the *r* coordinate, i.e. $PZ = \partial r$. Hence,

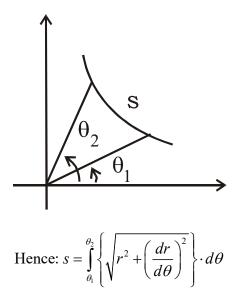
$$\delta s = \sqrt{\left(r\delta\theta\right)^2 - \left(\delta\theta\right)^2}$$

And in the limit the "infinitesimal" increase in arclength, *ds*, is given by: You should remove the reference to infinitessimal.

$$ds = \sqrt{r^{2} (d\theta)^{2} + (dr)^{2}}$$
$$= \left\{ \sqrt{\frac{r^{2} (d\theta)^{2}}{(d\theta)^{2}} + \frac{(dr)^{2}}{(d\theta)^{2}}} \right\} \cdot d\theta$$
$$= \left\{ \sqrt{r^{2} + \left(\frac{dr}{d\theta}\right)^{2}} \right\} \cdot d\theta$$

The arclength is given by the sum of small segments ∂s . Hence,

$$s \approx \sum_{\theta_1}^{\theta_2} \delta s$$



This is the arclength formula in polar coordinates.

Example

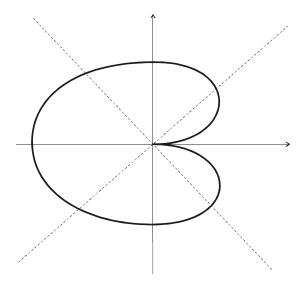
Find the length of the cardioid with equation $r = a(1 - \cos \theta)$

Solution

We visualise the cardioid by the usual technique of evaluating points and sketching

	θ	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$3\pi/4$	π	$5\pi/4$	$\frac{3\pi}{2}$	$7\pi/4$	2π
•	$\cos \theta$	1	$\frac{1}{\sqrt{2}}$	0	$-1/\sqrt{2}$	-1	$-1/\sqrt{2}$	0	$\frac{1}{\sqrt{2}}$	1
1-	$-\cos\theta$	0	$\sqrt{2}$ -1/ $\sqrt{2}$	1	$1+\sqrt{2}/\sqrt{2}$	2	$1+\sqrt{2}/\sqrt{2}$	1	$\sqrt{2}$ -1/ $\sqrt{2}$	0

This gives us the cardioid:-



We are finding the line length as the angle sweeps out from 0 to 2π .

$$r = a(1 - \cos\theta)$$

$$\frac{dr}{d\theta} = a\sin\theta$$

$$s = \int_{0}^{2\pi} \left\{ \sqrt{r^{2} + \left(\frac{dr}{d\theta}\right)^{2}} \right\} \cdot d\theta$$

$$= \int_{0}^{2\pi} \sqrt{\left(a(1 - \cos\theta)\right)^{2} + \left(a\sin\theta\right)^{2}} \cdot d\theta$$

$$= \int_{0}^{2\pi} \sqrt{a^{2}\left(1 - 2\cos\theta + \cos^{2}\theta\right) + a^{2}\sin^{2}\theta} \cdot d\theta$$

$$= a \int_{0}^{2\pi} \sqrt{1 - 2\cos\theta + \cos^{2}\theta + \sin^{2}\theta} \cdot d\theta$$

$$= a \int_{0}^{2\pi} \sqrt{2 - 2\cos\theta} \cdot d\theta$$

We recall that since $\cos 2A = \cos^2 A - \sin^2 A = 1 - 2\sin^2 A$ that $\cos \theta = 1 - 2\sin^2 \left(\frac{\theta}{2}\right)$

Therefore

\$

$$s = a \int_{0}^{2\pi} \sqrt{2 - 2\left(1 - 2\sin^{2}\left(\frac{\theta}{2}\right)\right)} \cdot d\theta$$
$$= a \int_{0}^{2\pi} \sqrt{4\sin^{2}\left(\frac{\theta}{2}\right)} \cdot d\theta$$
$$= 2a \int_{0}^{2\pi} \sin\left(\frac{\theta}{2}\right) \cdot d\theta$$
$$= 2a \left[-2\cos\left(\frac{\theta}{2}\right)\right]_{0}^{2\pi}$$
$$= 4a \left(-\cos \pi + \cos 0\right)$$
$$= 4a \left(1 + 1\right) = 8a$$

