Bayes Theorem

The definition of a conditional probability is

$$
P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}
$$

Bayes Theorem answers the question of "Given $P(A \mid B)$ what is $P(B \mid A)$?"
Bayes theorem provides the formula
$P(A \mid B)=\frac{P(B \mid A) \times P(A)}{P(B)}$

Example

An Anthology of poetry is made of the work of three poets, Donne, Herbert and Marvell. 45% of the poems are written by Donne, 25% are by Herbert and the rest are by Marvell. The poems are either above love (or soul union) or religion (sin \& redemption).

The probability that a poem by Donne will be religious is 0.5 , and the respective probabilities for Herbert and Marvell are 0.9 and 0.4. What is the probability that a love poem chosen at random will be done by Donne?

Solution
Let
D be the event the event the poem is by Donne
H be the event the event the poem is by Herbert
M be the event the event the poem is by Mavell
X be the event the event the poem is a Love poem
\bar{X} be the event the event the poem is a religious poem.
\$8
© blacksacademy.net

We are given
$P(D)=0.45$
$P(H)=0.25$
$P(M)=1-0.45-0.25=0.30$
$P(\bar{X} \mid D)=0.5$
$P(\bar{X} \mid H)=0.9$
$P(\bar{X} \mid M)=0.4$
We need to find $P(D \mid X)$
We use Bayes theorem to "Reverse the conditions" that is
$P(D \mid X)=\frac{P(X \mid D) \times P(D)}{P(X)}$
Now
$P(X \mid D)=1-P(\bar{X} \mid D)=1-0.5=0.5$

We have $P(D)=0.45$
And require $P(X)$
$P(X)$ is the total probability that the poem will be a love poem. To find this we construct a probability tree.

© blacksacademy.net

Therefore,

$$
P(X)=(0.45 \times 0.5)+(0.25 \times 0.1)+(0.3 \times 0.6)=0.43
$$

Hence, or substituting into Bayes Theorem

$$
\begin{aligned}
P(D \mid X) & =\frac{P(X \mid D) \times P(D)}{P(X)} \\
& =\frac{0.5 \times 0.45}{0.43} \\
& =0.523(3 . D . P .)
\end{aligned}
$$

This is a relatively "straight-forward" substitution into a formula. Unfortunately, it may be necessary to be familiar with Bayes Theorem in a more abstract and general form.

General form of Bayes Theorem

Given that $A_{1}, A_{2} \ldots A_{n}$ are mutually exclusive and exhaustive events so that, $P\left(A_{1} \cup A_{2} \cup A_{n}\right)=1$ and given that B is another possible event, then for each $i=1,2, \ldots n$

$$
P\left(A_{i} \mid B\right)=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{P\left(B \mid A_{1}\right) P\left(A_{1}\right)+P\left(B \mid A_{2}\right) P\left(A_{2}\right)+\ldots+P\left(B \mid A_{n}\right) P\left(A_{n}\right)}
$$

This is a tedious formula. However the denominator of the fraction (the part on the 'bottom') is just the total probability that event B will occur. To explain this let us draw a probability tree.

This shows the events $A_{1}, A_{2} \ldots A_{n}$ followed by the events B or not B (that is, \bar{B}). Since $A_{1}, A_{2} \ldots . A_{n}$ are mutually exclusive they form separate branches of the tree; being exhaustive means these are all the branches that there are. We place the probabilities, as usual, against the branches of the tree.

So summing the total probability that B will occur we get the usual
$P(B)=P\left(B \mid A_{1}\right) P\left(A_{1}\right)+P\left(B \mid A_{2}\right) P\left(A_{2}\right)+\ldots .+P\left(B \mid A_{n}\right) P\left(A_{n}\right)$
(This represents what one is doing when drawing a probability tree without really thinking about it).

We will now prove the formula in the next example

Example

If $A_{1,} A_{2} \ldots A_{n}$ are mutually exclusive and exhaustive events and B is another arbitrary event, show that

$$
P\left(A_{1} \mid B\right)=\frac{P\left(A_{1}\right) P\left(B \mid A_{1}\right)}{\sum_{r=1}^{n} P\left(A_{r}\right) P\left(B \mid A_{r}\right)}
$$

Solution

From the definition of the conditional probability
© blacksacademy.net

$$
P\left(A_{1} \mid B\right)=\frac{P\left(A_{1} \cap B\right)}{P(B)}
$$

The denominator just is

$$
P(B)=\sum_{r=1}^{n} P\left(A_{r}\right) P\left(B \mid A_{r}\right)
$$

as can be seen from the tree.
The numerator is also read from the tree as

$$
P\left(A_{1} \cap B\right)=P\left(A_{1}\right) \times P\left(B \mid A_{1}\right)
$$

So the theorem is proven
© blacksacademy.net

