The Binomial Theorem for Rational Indices

Prerequisites

You should already be familiar with the Binomial theorem which states that the expansion of $(a+b)^{n}$ is given by
$(a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\ldots .+\binom{n}{n-r} a^{n-r} b^{r}+\ldots .+\binom{n}{n} b^{n}$
where n is a positive integer and
${ }^{n} C_{r}$ or $\binom{n}{r}=\frac{n!}{r!(n-r)!}$
are the binomial coefficients. You should also be familiar with Pascal's triangle as a method for generating these binomial coefficients.

Example (1)

(a) Use Pascal's triangle to find the expansion of $(1-3 x)^{6}$.
(b) In the binomial expansion of $(a+3 x)^{7}$, the modulus of the coefficient of the term in x^{3} is 28 times larger than coefficient of the term in x^{3} in the binomial expansion of $(1-3 x)^{6}$. Given that $a \neq 0$, find the value of a.

Solution
(a)

$$
\begin{align*}
(1-3 x)^{6} & =\left(1 \times 1^{6} \times(-3 x)^{0}\right)+\left(6 \times 1^{5} \times(-3 x)^{1}\right)+\left(15 \times 1^{4} \times(-3 x)^{2}\right) \\
& +\left(20 \times 1^{3} \times(-3 x)^{3}\right)+\left(15 \times 1^{3} \times(-3 x)^{4}\right)+\left(6 \times 1^{1} \times(-3 x)^{5}\right)+\left(1 \times 1^{0} \times(-3 x)^{6}\right) \\
& =1-18 x+135 x^{2}-540 x^{3}+1215 x^{4}-1458 x^{5}+729 x^{6} \tag{b}
\end{align*}
$$

From part (a) the modulus of the coefficient of the term in x^{3} in the binomial expansion of $(1-3 x)^{6}$ is 540 . The coefficient of the term in x^{3} in the binomial expansion of $(a+3 x)^{7}$ is

$$
\binom{7}{3} \times a^{4} \times 3^{3}
$$

Therefore

$$
\begin{aligned}
& \binom{7}{3} \times a^{4} \times 3^{3}=28 \times 540 \\
& 35 a^{4} \times 27=15120 \\
& a^{4}=16 \\
& a=2 \quad a>0
\end{aligned}
$$

The purpose of this chapter is to extend the range of the Binomial theorem so that the expansion $(a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\ldots .+\binom{n}{n-r} a^{n-r} b^{r}+\ldots .+\binom{n}{n} b^{n}$
shall be valid (1) if n is n is negative and (2) if n is a rational number (that is, a fraction). We will also show how the Binomial theorem can be used to find approximations to irrational numbers such as $\sqrt{25.1}$.

The Binomial theorem when n is rational

The Binomial theorem can be extended to cover the expansion of $(1+x)^{n}$ where n is a rational number (a fraction), provided that $|x|<1$. In that case, the theorem takes the form
$(1+x)^{n}=1+n x+\frac{n(n-1) x^{2}}{2!}+\frac{n(n-1)(n-2) x^{3}}{3!}+\ldots$.
Note, this covers both the cases where (1) is n is negative and (2) if n is a rational number (that is, a fraction). The condition $|x|<1$ is necessary in order to make this series convergent - that is, if $|x|<1$, each successive term in x is smaller than the previous one, so the series gets closer and closer to the true value of $(1+x)^{n}$. For this reason, when the expression is in the form $(a+x)^{n}$ it
must first be placed in the form $a^{n}\left(1+\frac{x}{a}\right)^{n}$ before the theorem can be applied; it is valid only when $\left|\frac{x}{a}\right|<1$ or $|x|<a$. A number of examples will clarify the use of the Binomial theorem in this form.

Example (2)

Expand $(1-2 x)^{-2}$ as a series of ascending powers of x up to and including the term in x^{3}. State the set of values of x for which the expansion is valid.

Solution
We use the Binomial theorem in the form $(1+x)^{n}=1+n x+\frac{n(n-1) x^{2}}{2!}+\frac{n(n-1)(n-2) x^{3}}{3!}+\ldots$. Replacing x in the above by $(-2 x)$ and substituting $n=-2$

$$
\begin{aligned}
(1+(-2 x))^{-2} & =1+(-2)(-2 x)+\frac{(-2)(-2-1)(-2 x)^{2}}{2!}+\frac{(-2)(-2-1)(-2-2)(-2 x)^{3}}{3!}+\ldots \\
& =1+(-2)(-2 x)+\frac{(-2)(-3)(-2 x)^{2}}{2!}+\frac{(-2)(-3)(-4)(-2 x)^{3}}{3!}+\ldots \\
& =1+4 x+12 x^{2}+32 x^{3}+\ldots
\end{aligned}
$$

This expansion is valid for
$|2 x|<1$
$|x|<\frac{1}{2}$
$-\frac{1}{2}<x<\frac{1}{2}$

Example (4)

Expand $\frac{1}{\sqrt{1+3 x}}$ as a series of ascending powers of x up to and including the term in x^{3}, expressing the coefficients in their simplest form. State the set of values of x for which the expansion is valid.

Solution

$$
\begin{aligned}
\frac{1}{\sqrt{1+3 x}} & =(1+3 x)^{-\frac{1}{2}} \\
& =1+\frac{\left(-\frac{1}{2}\right)}{1!}(3 x)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2}(3 x)^{2}+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}(3 x)^{3}+\ldots \\
& =1-\frac{3}{2} x+\frac{27}{8} x^{2}-\frac{135}{16} x^{3}+\ldots
\end{aligned}
$$

© blacksacademy.net

This expansion is valid for
$|3 x|<1$
$|x|<\frac{1}{3}$
$-\frac{1}{3}<x<\frac{1}{3}$

Example (4)

Expand $(8-x)^{\frac{1}{3}}$ as a series of ascending powers of x up to and including the term in x^{3}, expressing the coefficients in their simplest form. State the set of values of x for which the expansion is valid.

Solution
We must first write $(8-x)^{\frac{1}{3}}$ in the form $a^{n}\left(1+\frac{x}{a}\right)^{n}$.

$$
\begin{aligned}
(8-x)^{\frac{1}{3}} & =\left(8\left(1-\frac{x}{8}\right)\right)^{\frac{1}{3}} \\
& =8^{\frac{1}{3}}\left(1-\frac{x}{8}\right)^{\frac{1}{3}} \\
& =2\left(1-\frac{x}{8}\right)^{\frac{1}{3}} \\
& =2\left\{1+\left(\frac{1}{3}\right)\left(\frac{x}{8}\right)+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(\frac{x}{8}\right)^{2}+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}\left(\frac{x}{8}\right)^{3}+\ldots\right\} \\
& =2\left\{1+\frac{1}{24} x-\frac{1}{576} x^{2}+\frac{5}{20736} x^{3}+\ldots\right\} \\
& =2+\frac{1}{12} x-\frac{1}{288} x^{2}+\frac{5}{10368} x^{3}+\ldots
\end{aligned}
$$

This expansion is valid for

$$
\begin{aligned}
& \left|\frac{x}{8}\right|<1 \\
& |x|<8 \\
& -8<x<8
\end{aligned}
$$

The next example illustrates a further extension of this form of the Binomial theorem to a new kind of problem; however, no new theory is involved.

Example (5)

Expand $\frac{1+x}{\sqrt{1-2 x}}$ as a series of ascending powers of x up to and including the term in x^{3}, expressing the coefficients in their simplest form. State the set of values of x for which the expansion is valid.

Solution
We must bring the denominator to the top and expand using the Binomial theorem.

$$
\begin{align*}
\frac{1+x}{\sqrt{1-2 x}} & =(1+x)(1-2 x)^{-\frac{1}{2}} \\
& =(1+x)\left(1+\left(-\frac{1}{2}\right)(-2 x)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}(-2 x)^{2}+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}(-2 x)^{3}+\ldots\right) \\
& =(1+x)\left(1+x+\frac{3}{2} x^{2}+\frac{5}{2} x^{3}+\ldots\right) \\
& =\left(1+x+\frac{3}{2} x^{2}+\frac{5}{2} x^{3}+\ldots\right)+x\left(1+x+\frac{3}{2} x^{2}+\frac{5}{2} x^{3}+\ldots\right) \tag{*}\\
& =1+x+\frac{3}{2} x^{2}+\frac{5}{2} x^{3}+\ldots+x+x^{2}+\frac{3}{2} x^{3}+\frac{5}{2} x^{4}+\ldots \\
& 1+2 x+\frac{5}{2} x^{2}+4 x^{3}+\ldots
\end{align*}
$$

The only new step in this question occurs at the line marked by (*) where we expand the two brackets and subsequently collect terms.

The Binomial Theorem and Approximations

The Binomial Theorem can be used to obtain approximations and to evaluate roots.

Example (6)

(a) Expand $(25+x)^{\frac{1}{2}}$ as a series of ascending powers of x up to and including the term in x^{2}, expressing the coefficients in their simplest form. State the set of values of x for which the expansion is valid.
(b) By substituting $x=0.1$ into the result for part (a) obtain an approximation to $\sqrt{25.1}$.

Solution
(a) $\quad(25+x)^{\frac{1}{2}}=5\left(1+\frac{x}{25}\right)^{\frac{1}{2}}$

$$
\begin{aligned}
& =5\left\{1+\left(\frac{1}{2}\right)\left(\frac{x}{25}\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(\frac{x}{25}\right)^{2}+\ldots\right\} \\
& =5\left(1+\frac{1}{50} x-\frac{1}{1250} x^{2}+\ldots\right)
\end{aligned}
$$

This is valid for

$$
\left|\frac{x}{25}\right|<1
$$

$$
|x|<25
$$

$$
-25<x<25
$$

(b)

$$
\begin{aligned}
\sqrt{25.1} & =(25+0.1)^{\frac{1}{2}} \\
& =5\left(1+\frac{1}{50}(0.1)-\frac{1}{5000}(0.1)^{2}+\ldots\right) \\
& =5(1+0.002-0.000002) \\
& =5.00999
\end{aligned}
$$

Example (7)

Expand $(1-x)^{-\frac{1}{3}}$ in ascending powers of x up to and including the term in x^{2}. State the range of values of x for which the expansion is valid. Hence, by writing $x=\frac{1}{8}$, find an approximate value for $\sqrt[3]{7}$ in the form $\frac{a}{b}$ where a and b are integers.

Solution

$$
\begin{aligned}
(1-x)^{-\frac{1}{3}} & =1-\frac{1}{3}(-x)+\frac{\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right)}{2!}(-x)^{2}+\ldots \\
& =1+\frac{1}{3} x+\frac{2}{9} x^{2}+\ldots
\end{aligned}
$$

This is valid for
$|x|<1$
$-1<x<1$
Substituting $x=\frac{1}{8}$ into both sides of this

$$
\begin{aligned}
& \left(1-\frac{1}{8}\right)^{-\frac{1}{3}} \approx 1+\frac{1}{3} \times \frac{1}{8}+\frac{2}{9}\left(\frac{1}{8}\right)^{2} \\
& \frac{1}{\sqrt[3]{1-\frac{1}{8}}} \approx 1+\frac{1}{24}+\frac{1}{288} \\
& \frac{\sqrt[3]{7}}{2} \approx \frac{301}{288} \\
& \sqrt[3]{7} \approx \frac{301}{144}
\end{aligned}
$$

© blacksacademy.net

