The Cayley-Hamilton Theorem for 2×2 Matrices

Characteristic polynomial and the Cayley-Hamilton theorem
Suppose that a 2×2 matrix \mathbf{A} has characteristic equation
$a \lambda^{2}+b \lambda+c=0$
To say that λ_{1} and λ_{2} are eigenvalues of \mathbf{A} means that they are solutions to this equation,
Hence
$a \lambda_{1}^{2}+b \lambda_{1}+c=0 \quad a \lambda_{2}^{2}+b \lambda_{2}+c=0$
Let $\mathbf{D}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$ then

$$
\begin{aligned}
a \mathbf{D}^{2}+b \mathbf{D}+c \mathbf{I} & =a\left(\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)^{2}+b\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)+c\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\binom{a \lambda_{1}^{2}+b \lambda_{1}+c}{a \lambda_{2}^{2}+b \lambda_{2}+c} \\
& =\binom{0}{0}
\end{aligned}
$$

Now suppose that $\mathbf{A}=\mathbf{X D X}^{-1}$ then

$$
\begin{aligned}
a \mathbf{A}^{2}+b \mathbf{A}+c \mathbf{I} & =a\left(\mathbf{X D X}^{-1}\right)^{2}+b\left(\mathbf{X D X}^{-1}\right)+c \mathbf{I} \\
& =a\left(\mathbf{X D X}^{-1}\right)\left(\mathbf{X D X}^{-1}\right)+b\left(\mathbf{X D X}^{-1}\right)+c \mathbf{I} \\
& =a\left(\mathbf{X D X}^{-1} \mathbf{X} \mathbf{D} \mathbf{X}^{-1}\right)+b\left(\mathbf{X D X}^{-1}\right)+c \mathbf{I} \mathbf{X X}^{-1} \\
& =a\left(\mathbf{X D}^{2} \mathbf{X}^{-1}\right)+b\left(\mathbf{X D X}^{-1}\right)+c \mathbf{X I X}^{-1} \\
& =\mathbf{X}\left(a \mathbf{D}^{2} \mathbf{X}^{-1}+b \mathbf{D} \mathbf{X}^{-1}+c \mathbf{I} \mathbf{X}^{-1}\right) \\
& =\mathbf{X}\left(\left(a \mathbf{D}^{2}+b \mathbf{D}+c \mathbf{I}\right) \mathbf{X}^{-1}\right) \\
& =\mathbf{X}\left(a \mathbf{D}^{2}+b \mathbf{D}+c \mathbf{I}\right) \mathbf{X}^{-1}
\end{aligned}
$$

In this argument we have made use of the fact that $\mathbf{I}=\mathbf{X X}^{-1}$ and that $\mathbf{I D}=\mathbf{D I}$ for any matrix, \mathbf{D}.

Hence
$a \mathbf{A}^{2}+b \mathbf{A}+c \mathbf{I}=\mathbf{X}^{-1}\left(a \mathbf{D}^{2}+b \mathbf{D}+c \mathbf{I}\right) \mathbf{X}=\mathbf{0}$
So a 2×2 matrix satisfies its own characteristic equation, which is the Cayley-Hamilton theorem.

Cayley-Hamilton theorem

Every matrix A is a root of its own characteristic polynomial.
Remark
The Cayley-Hamilton theorem can be established for square matrices of any dimension. This theorem is used as a computational device for finding inverses of matrices and higher powers.

Example

You are given the matrix $\mathbf{M}=\left(\begin{array}{ccc}3 & 2 & 2 \\ -2 & -2 & -2 \\ 1 & 2 & 2\end{array}\right)$
(a) Show that 0 and 1 are eigenvalues of \mathbf{M}, and find the other eigenvalue.
(b) Using the Cayley Hamilton theorem, or otherwise
(i) Show that $\mathbf{M}^{4}=11 \mathbf{M}^{2}-6 \mathbf{M}$ and verify that the matrix \mathbf{M} satisfies its own characteristic equation
(iii) Explain why it is not possible to obtain a value for \mathbf{M}^{-1} by cancelling down and rearranging the characteristic equation

Solution

(a) The characteristic equation is

$$
\left|\begin{array}{ccc}
3-\lambda & 2 & 2 \\
-2 & -2-\lambda & -2 \\
1 & 2 & 2-\lambda
\end{array}\right|=0
$$

If $\lambda_{1}=0$ we obtain
$\left|\begin{array}{ccc}3 & 2 & 2 \\ -2 & -2 & -2 \\ 1 & 2 & 2\end{array}\right|=3\left|\begin{array}{cc}-2 & -2 \\ 2 & 2\end{array}\right|+2\left|\begin{array}{cc}-2 & -2 \\ 2 & 1\end{array}\right|+2\left|\begin{array}{cc}-2 & -2 \\ 1 & 2\end{array}\right|=3(-4+4)+2(2+4)+2(-4+2)=0$
If $\lambda_{2}=2$ we obtain
$\left|\begin{array}{ccc}1 & 2 & 2 \\ -2 & -4 & -2 \\ 1 & 2 & 0\end{array}\right|=1\left|\begin{array}{cc}-4 & -2 \\ 2 & 0\end{array}\right|+2\left|\begin{array}{cc}-2 & -2 \\ 0 & 1\end{array}\right|+2\left|\begin{array}{cc}-2 & -4 \\ 1 & 2\end{array}\right|=4-4+0=0$
If $\lambda_{1}=0$ or $\lambda_{2}=2$, we observe that the above equation holds.
Therefore, $\lambda_{1}=0$ and $\lambda_{2}=2$ are eigenvalues.
The characteristic equation yields
$\left|\begin{array}{ccc}3-\lambda & 2 & 2 \\ -2 & -2-\lambda & -2 \\ 1 & 2 & 2-\lambda\end{array}\right|=0$
$(3-\lambda)\left|\begin{array}{cc}-2-\lambda & -2 \\ 2 & 2-\lambda\end{array}\right|+2\left|\begin{array}{cc}-2 & -2 \\ 2-\lambda & 1\end{array}\right|+2\left|\begin{array}{cc}-2 & -2-\lambda \\ 1 & 2\end{array}\right|=0$
$(3-\lambda)((-2-\lambda)(2-\lambda)+4)+2(-2+2(2-\lambda))+2(-4-(-2-\lambda))=0$
$-(3-\lambda)(2+\lambda)(2-\lambda)+4(3-\lambda)-4+4(2-\lambda)-8+2(2+\lambda)=0$
$-\left(6+\lambda-\lambda^{2}\right)(2-\lambda)+12-4 \lambda-4+8-4 \lambda-8+4+2 \lambda=0$
$-\left(12-4 \lambda-3 \lambda^{2}+\lambda^{3}\right)+12-6 \lambda=0$
$-2 \lambda+3 \lambda^{2}-\lambda^{3}=0$
$\lambda^{3}-3 \lambda^{2}+2 \lambda=0$
$\lambda\left(\lambda^{2}-3 \lambda+2\right)=0$
$\lambda(\lambda-1)(\lambda-2)=0$
So the three eigenvalues are

$$
\lambda_{1}=0 \quad \lambda_{2}=1 \quad \lambda_{3}=2
$$

(b) (i) The characteristic equation is $\lambda^{3}-3 \lambda^{2}+2 \lambda=0$

Therefore, from Cayley-Hamilton theorem, we have

$$
\mathbf{M}^{3}-3 \mathbf{M}^{2}+2 \mathbf{M}=\mathbf{0}
$$

Hence

$$
\begin{aligned}
\mathbf{M}^{4} & -3 \mathbf{M}^{3}+2 \mathbf{M}^{2}=\mathbf{0} \\
\mathbf{M}^{4} & =3 \mathbf{M}^{3}+2 \mathbf{M}^{2} \\
& =3\left(3 \mathbf{M}^{2}-2 \mathbf{M}\right)+2 \mathbf{M}^{2} \\
& =11 \mathbf{M}^{2}-6 \mathbf{M}
\end{aligned}
$$

(ii) The characteristic equation is $\lambda^{3}-3 \lambda^{2}+2 \lambda=0$
and we have $\mathbf{M}^{3}-3 \mathbf{M}^{2}+2 \mathbf{M}=\mathbf{0}$
To verify this equation we compute
$\mathbf{M}^{2}=\left(\begin{array}{ccc}3 & 2 & 2 \\ -2 & -2 & -2 \\ 1 & 2 & 2\end{array}\right)\left(\begin{array}{ccc}3 & 2 & 2 \\ -2 & -2 & -2 \\ 1 & 2 & 2\end{array}\right)=\left(\begin{array}{ccc}7 & 6 & 6 \\ -4 & -4 & -4 \\ 1 & 2 & 2\end{array}\right)$
$\mathbf{M}^{3}=\left(\begin{array}{ccc}7 & 6 & 6 \\ -4 & -4 & -4 \\ 1 & 2 & 2\end{array}\right)\left(\begin{array}{ccc}3 & 2 & 2 \\ -2 & -2 & -2 \\ 1 & 2 & 2\end{array}\right)=\left(\begin{array}{ccc}15 & 14 & 14 \\ -8 & -8 & -8 \\ 1 & 2 & 2\end{array}\right)$
Hence
$\mathbf{M}^{3}-3 \mathbf{M}^{2}+2 \mathbf{M}=\left(\begin{array}{ccc}15 & 14 & 14 \\ -8 & -8 & -8 \\ 1 & 2 & 2\end{array}\right)-3\left(\begin{array}{ccc}7 & 6 & 6 \\ -4 & -4 & -4 \\ 1 & 2 & 2\end{array}\right)+2\left(\begin{array}{ccc}3 & 2 & 2 \\ -2 & -2 & -2 \\ 1 & 2 & 2\end{array}\right)=\mathbf{0}$
So we have verified the equation.
(iii) To obtain an inverse we would like to argue as follows
$\mathbf{M}\left(\mathbf{M}^{2}-3 \mathbf{M}^{2}+2 \mathbf{I}\right)=\mathbf{0}$
$\mathbf{M}^{2}-3 \mathbf{M}+2 \mathbf{I}=\mathbf{0}$
$\mathbf{M}^{2}=3 \mathbf{M}-2 \mathbf{I}$
and so forth
This is not valid!
The cancellation law from step (1) to step (2) does not apply to matrices. You can have two non-zero matrices that multiply together to give the zero matrix, as precisely in this case! In the line $\mathbf{M}\left(\mathbf{M}^{2}-3 \mathbf{M}^{2}+2 \mathbf{I}\right)=\mathbf{0}$ it does not follow that since $\mathbf{M} \neq \mathbf{0}$ that $\mathbf{M}^{2}-3 \mathbf{M}+2 \mathbf{I}=\mathbf{0}$ and in fact, in this case $\mathbf{M}^{2}-3 \mathbf{M}+2 \mathbf{I} \neq \mathbf{0}$

Thus we cannot obtain a rearrangement of the equation in terms of the identity matrix I; hence we cannot multiply through by \mathbf{M}^{-1} to obtain and expression for \mathbf{M}^{-1} - the inverse of \mathbf{M}

[^0]Copyright © Black's Academy Limited - November 2010

[^0]: Copyright © Black's Academy Limited - November 2010

