Cayley's Theorem

Cayley's theorem

Let S_{n} be the symmetric group on n elements.
Any finite group is isomorphic to a subgroup of S_{n} for some n.

Proof

Let $G=(G, \circ)$ be a group of n elements with binary operation 。
For each g in G define a mapping as follows
Let t_{g} be the mapping $t_{g}: x \rightarrow g \circ x$ for every $x \in G$.
An equivalent notation for this is $t_{g}(x)=g x$.
If $x_{1}, x_{2} \in G$ and $t_{g}\left(x_{1}\right)=t_{g}\left(x_{2}\right)$ we have $g x_{1}=g x_{2}$ and thus $x_{1}=x_{2}$.
This means that t_{g} is injective.
For any $y \in G$ we have $t_{g}\left(g^{-1} y\right)=y$ with $g^{-1} y \in G$.
This means that t_{g} is surjective.
Further, $t_{g}(G) \subseteq G$.
These altogether mean that t_{g} is a bijection of G to itself, i.e. t_{g} is a permutation of the elements of G.

Let $S_{n}\left(S_{n}, \cdot\right)$ be the set of all permutations of the n elements of G. (The binary operation of composing permutations is denoted by \cdot)
Now
$t_{g h}(x)=g \circ h \circ x=g h x$
But
$t_{g} \bullet t_{h}(x)=t_{g}(h x)=g h x$
$t_{g h}(x)=t_{g} \cdot t_{h}(x)$
$t_{g h}=t_{g} \cdot t_{h}$
We define a mapping ψ by
$\psi:(G, \circ) \rightarrow\left(S_{n}, \cdot\right)$
$\psi: g \rightarrow t_{g} \quad \psi(g)=t_{g}$
Then since
$\psi(g \circ h)=t_{g h}=t_{g} \circ t_{h}=\psi(g) \cdot \psi(h)$
ψ is a homomorphism.
Now suppose $\psi(g)=e$ where e is the identity permutation in S_{n}.
But $t_{g}(x)=g \circ x$
Thus $g=e$ where e is the identity in G
© blacksacademy.net

This means that the kernel of the homomorphism is the identity. In symbols:
$\operatorname{ker}(\psi)=\{e\}$.
Hence, G is isomorphic to a subset of S_{n}.

Illustration

To illustrate this proof, consider the group of symmetries of the square. These are

1. Identity

$$
e=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right)
$$

2. Rotation through $\pi / 2$

$r_{1}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right)$
3. \quad Rotation through π

$r_{2}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 2\end{array}\right)$
4. \quad Rotation through $-\pi / 2$

$r_{3}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3\end{array}\right)$
5. Reflection through $-\pi / 4$

$$
q_{1}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 4 & 3 & 2
\end{array}\right)
$$

6. Reflection through $\pi / 2$

$$
q_{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right)
$$

7. Reflection through $+\pi / 2$

$$
q_{3}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{array}\right)
$$

8. Refleftion through the x-axis

$$
q_{4}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1
\end{array}\right)
$$

This gives the set $G=\left\{e, r_{1}, r_{2}, r_{3}, q_{1}, q_{2}, q_{3}, q_{4}\right\}$ with group table

	e	r_{1}	r_{2}	r_{3}	q_{1}.	q_{2}	q_{3}	q_{4}
e	e	r_{1}	r_{2}	r_{3}	q_{1}	q_{2}	q_{3}	q_{4}
r_{1}	r_{1}	r_{2}	r_{3}	e	q_{2}	q_{3}	q_{4}	q_{1}
r_{2}	r_{2}	r_{3}	e	r_{1}	q_{3}	q_{4}	q_{1}	q_{2}
r_{3}	r_{3}	e	r_{1}	r_{2}	q_{4}	q_{1}	q_{2}	q_{3}
q_{1}	q_{1}	q_{4}	q_{3}	q_{2}	e	r_{3}	r_{2}	r_{1}
q_{2}	q_{2}	q_{1}	q_{4}	q_{3}	r_{1}	e	r_{3}	r_{2}
q_{3}	q_{3}	q_{2}	q_{1}	q_{4}	r_{2}	r_{1}	e	r_{3}
q_{4}	q_{4}	q_{3}	q_{2}	q_{1}	r_{3}	r_{2}	r_{1}	e

Note, in constructing this table there is no real alternative to just working out most of the entries by hand, the long way. For example, $q_{1} r_{1}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 4 & 3 & 2 & 1\end{array}\right)=q_{4}$. The mappings, t_{g} are given by converting the rows of this table into functions
$t_{g}\left\{\begin{array}{c|cccccccc}10 & r_{1} & r_{2} & r_{3} & q_{1} & q_{2} & q_{3} & q_{4} \\ \hline t_{e} & e & r_{1} & r_{2} & r_{3} & q_{1} & q_{2} & q_{3} & q_{4} \\ t_{r_{1}} & r_{1} & r_{2} & r_{3} & e & q_{2} & q_{3} & q_{4} & q_{1} \\ t_{r_{2}} & r_{2} & r_{3} & e & r_{1} & q_{3} & q_{4} & q_{1} & q_{2} \\ t_{r_{3}} & r_{3} & e & r_{1} & r_{2} & q_{4} & q_{1} & q_{2} & q_{3} \\ t_{q_{1}} & q_{1} & q_{4} & q_{3} & q_{2} & e & r_{3} & r_{2} & r_{1} \\ t_{q_{2}} & q_{2} & q_{1} & q_{4} & q_{3} & r_{1} & e & r_{3} & r_{2} \\ t_{q_{3}} & q_{3} & q_{2} & q_{1} & q_{4} & r_{2} & r_{1} & e & r_{3} \\ t_{q_{4}} & q_{4} & q_{3} & q_{2} & q_{1} & r_{3} & r_{x} & r_{1} & e\end{array}\right.$

This exhibits each row as a mapping. The general idea of the mapping can be seen from the following
\qquad

Each mapping is a permutation of the 8 elements of G, and there are 8 mappings in all. However, in S_{8} there are $8!=40320$ such permutations, and hence 40320 such mappings.

That is rather a lot of mappings, and shows that in some ways Cayley's theorem is interesting only from a theoretical point of view. Since the permutation group in which any other group is embedded is very much larger than that group, this does not tell us much new about its structure. However, it is possible to find a smaller S_{n} in which to embed a group. In the case of the symmetries of the square, this is S_{4}, which is the permutation group of four elements, and also the symmetry group of the tetrahedron.

There are $4!=24$ elements in S_{4}

