Centre of Mass of a Uniform Solid of Revolution

Our aim is to find the centre of mass of a uniform solid of revolution under the curve $y=$ $f(x)$ between the limits $x=a$ and $x=b$. The following diagram illustrates this problem.

Let
(\bar{x}, \bar{y})
be the centre of mass. By symmetry - since the solid is formed by revolution about the x axis,

$$
\bar{y}=0
$$

The result for \bar{x} is:
$\bar{x}=\frac{\int_{a}^{b} x y^{2} d x}{\int_{a}^{b} y^{2} d x}$
© blacksacademy.net

Before we prove this result we illustrate its application.

Example (1)

Prove that the centre of mass of a solid hemisphere of radius a is $3 a / 8$ from the plane face.

The x-coordinate of the centre of mass is
$\bar{x}=\frac{\int_{0}^{a} x y^{2} d x}{\int_{0}^{a} y^{2} d x}$
Now $\int_{0}^{a} y^{2} d x=\int_{0}^{a}\left(a^{2}-x^{2}\right) d x$

$$
=\left[a^{2} x-\frac{x^{3}}{3}\right]_{0}^{a}=a^{3}-\frac{a^{3}}{3}=\frac{2 a^{3}}{3}
$$

And $\int_{0}^{a} x y^{2} d x=\int_{0}^{a} x\left(a^{2}-x^{2}\right) d x$

$$
=\int_{0}^{a} a^{2} x-x^{3} . d x
$$

$$
=\left[\frac{a^{2} x^{2}}{2}-\frac{x^{4}}{4}\right]_{0}^{a}=\frac{a^{4}}{2}-\frac{a^{4}}{4}=\frac{a^{4}}{4}
$$

$\therefore \bar{x}=\frac{a^{4} / 4}{2 a^{3} / 3}=\frac{3 a}{8}$

We will now prove the result.

To find the centre of mass of a uniform solid of revolution under the curve $y=f(x)$ between the limits $x=a$ and $y=b$.

Let

$$
(\bar{x}, \bar{y})
$$

be the centre of mass and ρ the density of the solid per unit volume. The volume of the solid of revolution is:
$V=\pi \int_{a}^{b} y^{2} d x$
We divide the revolution into n strips of width δx. The height of each strip corresponding to ordinate x_{i} is y_{i}.

Copyright © Blacksacademy - September 2001

The volume of each strip is
$\pi\left(y_{i}\right)^{2} d x$
Since mass $=$ density x volume .
The mass of the i th strip is
$M_{i}=\rho \pi\left(y_{i}\right)^{2} d x$
The mass of the whole solid is
$\rho V=\rho \pi \int_{a}^{b} y^{2} d x$
Taking moments about the y-axis.
$\begin{aligned} & \text { Sum of moments of each } \\ & \text { section about its centre of mass }\end{aligned}=\begin{aligned} & \text { The moment of the whole solid } \\ & \text { of revolution about } \bar{x}\end{aligned}$
$\therefore \sum_{i=0}^{n} M_{i} X_{i}=M . \bar{x}$
also $\sum_{i=0}^{n} M_{i} X_{i}=\sum_{x=a}^{b} M_{i} X_{i}$

Therefore,

$$
\begin{aligned}
& \sum_{x=a}^{b} \rho \pi\left(y_{i}\right)^{2} \delta x \cdot X_{i}=\left(\rho \pi \int_{a}^{b} y^{2} d x\right) \bar{x} \\
& \therefore \int_{a}^{b} y^{2} x d x=\left(\int_{a}^{b} y^{2} d x\right) \bar{x} \\
& \therefore \bar{x}=\frac{\int_{a}^{b} y^{2} \cdot x \cdot d x}{\int_{a}^{b} y^{2} \cdot d x}
\end{aligned}
$$

We conclude with a further example of applications of this result.

Example (2)

Prove that the centre of mass of a solid cone of height h is $h / 4$ from its base.

A solid cone is formed by revolving the straight line $y=f(x)$ as shown. Let the base have area a. To find the equation of $y=f(x)$ note that it is a straight line with equation $y=m x+c$. The gradient is $-a / h$ and the intercept is a. Hence it is:

$$
y=-\frac{a}{h} x+c
$$

Then

Copyright © Blacksacademy - September 2001

$$
\begin{aligned}
& \begin{aligned}
& \bar{x}=\frac{\int_{0}^{h} y^{2} x d x}{\int_{0}^{h} y^{2} d x} \\
& \text { Now } \int_{0}^{h} y^{2} d x=\int_{0}^{h}\left(-\frac{a}{h} x+a\right)^{2} d x \\
&=\int_{0}^{h}\left(\frac{a^{2}}{h^{2}} x^{2}-\frac{2 a^{2}}{h} x+a^{2}\right) d x \\
&=\left[\frac{a^{2} x^{3}}{3 h^{2}}-\frac{a^{2} x^{2}}{h}+a^{2} h\right]_{0}^{h} \\
&=\frac{a^{2} h^{3}}{3 h^{2}}-\frac{a^{2} h^{2}}{h}+a^{2} h \\
&=a^{2}\left(\frac{h}{3}-h+h\right) \\
&=\frac{a^{2} h}{3}
\end{aligned}
\end{aligned}
$$

And

$$
\begin{aligned}
& \int_{0}^{h} y^{2} x d x=\int_{0}^{h}\left(-\frac{a}{h} x+a\right)^{2} x d x \\
&=\int_{0}^{h}\left(\frac{a^{2} x^{3}}{h^{2}}-\frac{2 a^{2} x^{2}}{h}+a^{2} x\right) d x \\
&=\left[\frac{a^{2} h^{4}}{4 h^{2}}-\frac{2 a^{2} x^{3}}{3 h}+\frac{a^{2} x^{2}}{2}\right]_{0}^{h} \\
&=a^{2}\left(\frac{h^{6}}{4 h^{4}}-\frac{2 h^{5}}{3 h}+\frac{h^{2}}{2}\right) \\
&=a^{2}\left(\frac{h^{2}}{4}-\frac{2 h^{2}}{3}+\frac{h^{2}}{2}\right) \\
&=\frac{a^{2} h^{2}}{12} \\
& \therefore \bar{x}=\frac{a^{2} h^{2} / 12}{a^{2} h / 3}=\frac{h}{3} \text { Shown. }
\end{aligned}
$$

Copyright © Blacksacademy - September 2001

