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Conic sections 
 
 

Conic sections   
 

Conic sections are curves made by the intersection of a plane and a double cone.  For example, the 

ellipse is made in the following way. 

 

 

 

Different ellipses are formed either by rotation of the plane about a fixed line or by sliding the 

fixed line about which the plane is rotated up and down 
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The hyperbola and parabola arises from other kinds of section of the double cone.   

 

 

 

 

The focus-directrix property of conics   
 

All conic sections have what is known as a focus-directrix property.  This means that the curve is 

defined by reference to a line (the directrix) and a point (the focus).  To show how this arises, 

firstly imagine dropping a sphere inside a cone. 

We now draw a line outside the cone 

and construct a plane that uses this line 

as a hinge and intersects the cone in 

such a way that it just touches the 

sphere.  The line is the  and 

the point where the plane just touches 

the sphere is the   By adjusting 

the position of the directrix and the 

size of the sphere (and hence the 

position of the focus) we can define 

every kind of conic section  every kind 

of ellipse, hyperbola and parabola.

directrix,

focus.


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A circle is made by the intersection of a plane perpendicular to the central axis of the cone. 

 

 

 

 

The circle 
 

The Cartesian form of the circle is  

 2 2 2x y r  

 

y

x
O

r

( )x, y

 

If the centre of the circle is shifted to the point  ,   then the equation becomes 

       
22 2x y r  
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y

xO

r

( )x, y

( )
y

x

 

 

Multiplying out this expression gives 

        2 2 2 2 22 2 0x y x y r  

The terms  ,   and  are all constants, and it is usual to express this equation in the formr  

    2 2 2 2 0x y gx fy c  

By comparing the two forms we can see that the centre is at   ,g f  and the radius is 

  2 2g f c  

 

Example (1) 

Find the Cartesian form of the equation of the circle with centre (4, 3) and radius 5 

 

Solution 

    
   

    

   

2 2 2

2 2 2

4 3 5

4 3 5

x y

x y
 

 

Example (2) 

Find the centre and radius of the circle whose Cartesian equation is 

    2 26 12 29 0x x y y  

 

 Solution 

 Begin by completing the squares for both the x and y terms 

    2 26 12 29 0x x y y  
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   
      

   
   
   

    

        

      

   

   

2 2

2 22 2 2 2

2 2

2 2

2 2 2

6 12 29 0

6 3 3 12 6 6 29 0

3 9 6 36 29 0

3 6 16

3 6 4

x x y y

x x y y

x y

x y

x y

 

So the circle has  3, 6  and radius 4 . 

 

The centre of a circle lies at the intersection of two perpendicular bisectors of cords joining points 

on the circle. 

 

y

x
O

( )

P

Q

R

C

 

 

Example (3) 

Find.       the circle which passes through the points 6,4 ,  7, 3 ,  1, 21  

 

Solution 

   
 

 



  
    
  

1 2

1 2

The gradient of the cord joining 6,4  to 7, 3  is

4 3
7

6 7

1Therefore, the gradient of the perpendicular to this cord is 7
The midpoint of this cord is 6.5,0.5

The equation of the perpen

y y y
m

x x x

 

dicular bisector of this cord is found by

substitution into

y mx c
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 

  


      

   

1
7

1 1 13

2 7 2
1 13 7 13 6 3

2 14 14 14 7
31Hence  or 7 37 7

y x c

c

c

y x y x

 

   
 

 

     
   
  

1 2

1 2

The gradient of the cord joining 7, 3  to 1, 21  is

3 21 3 21

7 1 6

y y y
m

x x x

 


  
  
 

 

 


 

6
Therefore, the gradient of the perpendicular to this cord is 

3 21

3 21
The midpoint of this cord is 4,

2

The equation of the perpendicular bisector of this cord is found by

6

3 21

3 21

2

y mx c

y x c

   
     

 
   

 

         
     

   


 

 

6
4

3 21

3 21 3 21 483 21 24 9 21 48 36 18

2 3 21 3 212 3 21 2 3 21 2 3 21

6 18
Hence

3 21 3 21

c

c

y x

 

 

 

 
 

 

 

Solving 

7 3 1

6 18
2

3 21 3 21

From 1 7 3

In 2

6 18
7 3

3 21 3 21
42 18 18

3 21 3 21 3 21
42

3 21
0

3

Hence, the circle has centre 3, 0

y x

y x

x y

y y

y
y

y
y

y

x

 


 

 
 


  

 

  
  






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P (6,4)

Q (7, 3)

R (1, 27)

C (0,3)

P (6,4)

C (0,3) 3

4
5

y

x

 

 

The radius of the circle is found by Pythagoras as 

         
2 2 2 26 3 4 0 3 4 5r  

 

Parametric equation of the circle 

The circle, centred on the origin, has parametric equations 






 

cos

sin

where 0 2

x a t

y a t

t

 

y

xO

r

( ) = ( cos sin )x, y r t, r t

t t

r

x = r tcos

 y  r t = sin

 

Example (4) 

A circle has parametric equations 



 

 

2 3cos

3sin

0 2

x t

y t

t

 

 
  
i   Find the cartesian equation of the circle.

ii  Let  be the point where .  Find the equation of the normal to the circle at .4P t P
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Solution 

   








 

       
   

   

2 2

2 2

2 2

i Since 2 3cos

2
cos

3
and since 3sin

sin
3

Substitution into sin cos 1 gives

2
1

3 3

4 4 9

x t

x
t

y t

y
t

t t t

x y

x x y

 

    2 2

Hence

4 5 0

is the Cartesian equation of the circle.

x x y  

 

 ii 2 3cos 3sin

3sin 3cos

3cos
cot

3sin

The gradient of the tangent is, therefore, cot

Hence, the gradient of the normal is tan

3 3
When ,  2 3cos 2 ,  3sin4 4 42 2

x t y t

dx dy
t t

dt dt
dy

dy tdt t
dxdx t

dt
t

m t

t x y  

  

  

   





      

 

 

The equation of the normal is found by

tan

tan 4

On substituting for  and 

3 3
2

2 2

3 3
2 2

2 2

Hence, the equation of the normal is

2

y mx c

y t x c

y x c

y x c

x y

c

c

y x



 

 

 

 

 
   
 

 
     

 

 
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The parabola 
 

The parabola has parametric equations 

 2 2 where  is a positive constant.x at y at a  

Eliminating t from this expression gives 



     
 


2 2 2
2

2

2

2

2 4 4

Hence 4

y
t

a

y ay y
x at a

a a a

y ax

 

This gives the Cartesian equation of the parabola.  Its graph is 

y

x
O

 

The parabola has a focus/directrix property.  This is illustrated by the following diagram 

y

x
O

M P

S
-a a

l

( )2 , 2at at
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The line l runs parallel to the y-axis, with equation  x a .  This is the directrix.  The point S lies 

at a on the x-axis and is called the focus.  The line PM runs parallel to the x-axis – that is, it is 

perpendicular to the directrix.  The parabola is defined by the ratio 

 1
PS

PM
   

We can show that this is the case as follows. 

    2 21PM at a a t  

   

 
 

  

   

  

  

 

2 22 2

2 2 2 2 4 2 2

2 2 2 2 4

2 4

22 2

2

2 4

2

1 2

1

PS at a at

a a t a t a t

a a t a t

a t t

a t

 

 
 
 

  


  



2

2

2

1

1
1

1

PS a t

a tPS

PM a t

 

 

Example (5) 

   
  2

A parabola has focus 3,0  and directrix 3.  Find its equation in Cartesian form.

A parabola has Cartesian equation 16 .  Find its focus.

i x

ii y x

 



 

 Solution 

 
   

 

2

2

The equation of the parabola in Cartesian form is

4  where  is the directrix and ,0  is the focus.

12  is the Cartesian equation of this parabola.

i

y ax x a a

y x

 

   Comparing 12  with 4 ,  then 3,  so the focus is at 3,0  ii y x y ax a    

 

 

The ellipse 
 

The ellipse has parametric equations 






 

cos

sin

where 0 2

x a t

y b t

t

 

The Cartesian equation of the ellipse is 

 
2 2

2 2
1

x y

a b
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Example (6) 

Derive the Cartesian equation for the ellipse,  
2 2

2 2
1

x y

a b
 from the parametric form 






 

cos

sin

where 0 2

x a t

y b t

t

 

 

Solution 

 

 

 

       
   

 

2 2

2 2

2 2

2 2

Since cos  then cos

and since sin  then sin

Hence, since

cos sin 1

1

Hence, 1

x
x a t t

a
y

y b t t
b

t t

x y

a b

x y

a b

 

 

x

y

x = a cos 

y = b sin  
tx

y

t

a

b

 

 

Notice here that when  


  

  

0 then cos ,  sin 0

 then cos 0,  sin2

t a t a b t

t a t b t b
 

so the curve cuts the x-axis at a and the y-axis at b. 

Here the x-axis and y-axis are axes of symmetry.  The longer axis of symmetry is called 

the major axis and the shorter axis of symmetry is called the minor axis. 
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When a = b the equation of the ellipse reduces to 

 

 

2 2

2 2

2 2 2

1

or

x y

a a

x y a

 

which is the equation of the circle.  So a circle is a special form of ellipse. 

 

Example (7) 

Show that the equation for the tangent to the ellipse in parametric form is 

sin cos 1
y x

t t
b a

   

Solution 

By differentiating the parametric form of the ellipse we obtain the tangent to the ellipse 




  



   


cos

sin

sin

cos

cos
cot

sin

x a t

y b t

dx
a t

dt
dy

b t
dt

dy b t b
t

dx a t a

 

By substituting 

cos

sin

cot

into 

we obtain the equation of the tangent to an ellipse.  Substitution gives

x a t

y b t

dy b
m t

dx a
y mx c




  

 

 

 

 

  

  


   

2 2 2

sin cot cos

cos
sin cos

sin

cos (sin cos )
sin

sin sin sin

b
b t t a t c

a
b t

b t a t c
a t

b t b t t b
c b t

t t t

 

  

  

 

Hence

cot
sin

Dividing by  and multiplying by sin  gives

sin cot .sin 1

sin cos 1

b b
y tx

a t
b t

y x
t t t

b a
y x

t t
b a
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The ellipse can also be defined as a locus of a point.  This is a point that maintains a distance 

from both a point and a line. 

 

x

y
l

S

P

O

M

 

 

The fixed line is called the directrix and the point is called the focus.  The locus is maintained by 

the rule that the ratio of PS = the distance of the locus to the focus and PM = the perpendicular 

distance of the locus to the line is always constant.  That is 

 where  is a constant.
PS

e e
PM

 

In order to represent an ellipse, the constant e must be less than 1 

 0 1e  

The constant, e, is called the eccentricity.  The equation 
PS

e
PM

 is a third way of defining the 

ellipse algebraically.  If the ellipse cuts the x-axis at a, then we can show that the focus is at the 

point ae and the directrix passes through the point 
a

e
 on the x-axis. 

x

y l

S

P

O

M

ae x a a
e
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To show this, suppose P lies on the x-axis, and the distances OS = u, OM = v. 

 

x

y

l

S P

O u a v

M

 

 

We have 

   







  

Hence

1

PS
e

PM

a u
e

v a
a u e v a

 

The ellipse also passes through the point a on the negative x-axis 

 

x

y

l

SP

O u-a v

M

 

Hence 
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   







   2

PS
e

PM
a u

e
v a
a u e v a

 

On adding the two equations 

    





2

2 2

a e v a v a

a ev

a
v

e

 

On subtracting the two equations 

     




2

2 2

u e v a v a

u ea

u ea

 

This demonstrates that the focus lies at ea and the directrix lies at 
a

e
 on the x-axis.  These 

properties enable us to derive a fourth equation representing the ellipse 

      2 2 2 2 21 1x e y a e  

To show this 

 

x

y l

S

P

O

M

ae x a a
e

 







2
2

2

2 2 2

Hence

PS
e

PM

PS
e

PM
PS e PM
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 

 

2
22 2 2

2
2 2 2

But,  and 

Whence

a
PS x ae y PM x

e

a
x ae y e x

e

      
 

     
 

 

 
   
     

   

22 2 2 2 2

2 2 2 2 2

2 2

1 1

x ae ae y a ae e x

x e y a e
 

 

 



 


22

2 2

2 2 2

If we divide both sides of this equation by  and 1  we obtain

1
1

a e

x y

a a e

 

 
2 2

2 2
Which, if we compare with the Cartesian equation of the ellipse 1  shows us that

x y

a b
 

  2 2 21b a e  

 

Example (8) 

An ellipse has Cartesian equation  

 
2 2

1
5 4

x y
 

Find its eccentricity, the coordinates of its foci and the equations of its two directrices. 

 

 Solution 

The equation of the ellipse in standard form is 

 
2 2

2 2
1

x y

a b
 

  

  

2 25,  4

5,  2

a b

a b
 

Substitution into the relationship 

  2 2 21b a e  

gives  

         2 2 2 14 5 1 4 5 5 5 1 5e e e e  

1The foci are at ;  hence, the foci are at 5. 1.5ae   

 

The equations of the directrix are 

1
Hence, the equations of the directrix are 5

1
5

a
x

e

x

 

   
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The hyperbola 
 

The hyperbola has parametric equations 






 

sec

tan

where 0 2

x a t

y b t

t

 

The Cartesian equation is 
2 2

2 2
1

x y

a b
   

This can be derived from the parametric equations as follows.  Since  sec ,  sec
x

x a t t
a

 and 

since  tan ,  tan
y

y b t t
b

 substitution into the trigonometric identity  2 2sec tan 1 givesx x  

       
   

2 2

1
x y

a b
 

 

y

a
x

-a

O

b
y x

a
 

b
y x

a


 

 

The x-axis here is called the transverse axis, and the y-axis is the conjugate axis.  The central point 

through which these axes of symmetry pass is called the centre.  The asymptotes are the lines to 

which the curve gets closer and closer without actually touching.  In this standard representation 

of a hyperbola, the asymptotes are the lines 

  and 
b b

y x y x
a a
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The focus/directrix property also applies to hyperbolas.  This is illustrated by the following 

diagram. 

 

y

a
x

O

M
P x, y( )

S
a
e

ae

l  

 

The ratio of the distances 

  1
PS

e e
PM

 

is constant.  That is, a hyperbola can be defined to be the locus of a point such that the distance 

of that point from a fixed point, S, called the focus, and a fixed line, l, called the directrix, is always 

a constant number¸ e, where e > 1.  As for the ellipse we can show that the directrix is the line 


a

y
e

, and the focus lies at ae on the x-axis.  The hyperbola has two branches, and the second 

directrix lies at  
a

y
e

 and the second focus lies at ae.  The equation for the hyperbola can be 

made to take the form 

 
 



2 2

2 2 2
1

1

x y

a a e
 

and, by comparison with the standard form 

 
2 2

2 2
1

x y

a b
 

we have 

  2 2 2 1b a e  
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Example (9) 

A hyperbola has Cartesian equation 

2 2

1
144 25

x y
   

Find its eccentricity, the coordinates of the foci and the equations of its directrices. 

 

 Solution 

2 2

2 2

The standard form is

1
x y

a b
 

 

 
Comparison with this form gives

12,  5a b
 

 

 

   

2 2 2

2

2

2

Substitution into the relationship

1

gives

25 144 1

144 144 25

144 169

13
12

13Foci are at ,0 ,  hence at ,012
12 144

Directrices are at ,  hence at 
13 13

12

b a e

e

e

e

e

ae

a
x x

e

 

 

 





 

     

 

 

 

 

The rectangular hyperbola 
 

The equation  
2 2

2 2
1

x y

a b
 gives the general form of the hyperbola.  When a = b, then the hyperbola 

takes a special form called the rectangular hyperbola with equation 

 2 2 2x y a  

In this case since 

 
 

2 2 2

2 2 2

1  and ,  then

1

b a e b a

a a e

  

 
 

2

2

1 1

2

2

e

e

e

  




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So the eccentricity of a rectangular hyperbola is 2 .   The asymptotes of a rectangular hyperbola 

in standard form are    and y x y x . 

 

y

x
O

2 2 2x y a 

 

 

Rotation of the rectangular hyperbola about the origin by 45 gives the curve 

 
2

2 or 
c

xy c y
x

 

in which the asymptotes are the coordinate axes 

 
y

x
O
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Example (10) 

Show that the equation of the tangent to a rectangular hyperbola in standard position 

with parametric equations 

sec

tan

x a t

y a t




 

 is  

 sec tanx t y t a  

 

 Solution 

The parametric equations of a rectangular hyperbola are 








    

2

2

sec

tan

Therefore, on differentiating

sec tan

sec

1sec sec 1cos
sinsec tan tan sin

cos

x a t

y a t

dx
a t t

dt
dy

a t
dt

dy
dy a t tdt t

dx tdx a t t t t
dt t

 

On substituting the gradient into the equation of the straight line 

we obtain

1

sin
Substituting the coordinates of a point on the curve, sec ,  tan

1
tan sec

sin
sin 1 1

cos sin co

y mx c

y x c
t

x a t y a t

a t a t c
t

t
a a

t t

 

 

 

 


s

c
t


 

2 2

sin 1

cos sin cos

sin 1 cos cos

sin cos sin cot sin

t
c a

t t t

t t t
c a a a

t t t t

   
 
    

      
   

 

Then the equation of the tangent is 

 
1 cos

sin sin
sin

on multiplying through by 
cos

t
y x a

t t
t

t

 

 

 

sin 1

cos cos
tan sec

t
y x a

t t
y t x t a
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Conics in standard position 
 

Conic Eccentricity Focus Directrix Cartesian 

equation 

Parametric 

equation 

 

Circle ___ ___ ___  2 2 2x y r  






 

cos

sin

where 0 2

x a t

y a t

t

 

Ellipse  0 1e    ,0ae   
a

x
e

 

 
 

 

2 2

2 2

2 2 2

1

where 1

x y

a b

b a e

 





 

cos

sin

where 0 2

x a t

y b t

t

 

Parabola  1e   ,0a   x a  2 4y ax  


2

2

where  is a 

positive constant.

x at

y at

a
 

Hyperbola  1e    ,0ae   
a

x
e

 

 
 

 

2 2

2 2

2 2 2

1

where 1

x y

a b

b a e

 





 

sec

tan

where 0 2

x a t

y b t

t

 

Rectangular 

Hyperbola 
 2e    2,0a   

2

a
x   2 2 2x y a  






 

sec

tan

where 0 2

x a t

y a t

t

 

 

 

 
 
 
 
 
 
 
 
 


