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Conservation of Angular Momentum 
 
 
When two objects are involved in a head-on collision we believe that their total linear 
momentum is conserved – this is the substance of Newton’s famous second law.  The 
momentum of the combined objects before the collision is equal to the moment of the 
combined objects after the collision. 
 
Forces not only propel objects in straight lines; they also cause them to rotate. Rotating 
objects have angular momentum.  So we would expect the angular momentum of objects 
involved in a collision also to be conserved – that is, the sum of the angular momentums of 
the particles before a collision is equal to the sum of the angular momentums of those 
particles after collision. 
 
Thus we seek an analogy to  the familiar result that in any closed system linear momentum 
is conserved for angular momentum. 
 
That analog is the conservation of angular momentum: the angular momentum of any 
closed system that is rotating is conserved – that is, does not change. 
 
By analogy with linear momentum, angular momentum, is defined to be: 
 
angular momentum = moment of inertia  angular velocity 
 
J I   
 
By analogy with conservation of linear momentum, conservation of angular momentum 
entails that, for any closed system, the sum of all the angular momentums of the 
constituent parts is always constant. 
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Angular momentum is also called moment of momentum. 
 
If a system is subject to an external torque (also called moment or couple) then the angular 
momentum of such as system will not be conserved. Such a system is said to be open. In 
an open system angular momentum is not conserved 
 
Firstly, we illustrate the application of conservation of momentum; then we demonstrate 
the consistency of the definition of angular momentum and prove the theorem that in a 
closed system angular momentum is always conserved. 
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Example (1) 
 
An ice-skater rotates about a fixed vertical axis with moment of inertia 6.0 Kg m2 
when her arms are extended. She draws her arms to her side, and her moment of 
inertia changes to 2.4 Kg m2. Given that her initial angular velocity is 7.2 rads-1 find 
her final angular velocity once she has brought her arms down by her side. 
 
Conservation of angular momentum gives 
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We now demonstrate the consistency of the definition of angular momentum with the 
definition of linear momentum. 
 
Let P be a particle of mass M rotating about an axis L. Let r be the perpendicular distance 
of P from L. 
 

r

P
 

 
As usual the tangental velocity is 
 
v r   
 
Then the tangental momentum is 
 
mr  
 
Note that since P is in orbit there is no radial component of the linear momentum, so the 
tangental linear momentum is all the momentum there is. 
 
Now the moment of a force – its torque – is defined to be: 
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moment = force  perpendicular distance 
 
C = Fr. 
 
By analogy, the moment of the linear momentum (called moment of momentum or angular 
momentum) is 
 
moment of momentum = linear momentum x perpendicular distance 
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J I    

2since  I mr  
 
 
Proof of the result 
 
We now proceed to prove the main result – that in any collision, or closed system, angular 
momentum is conserved. 
 
Consider the collision of two particles P and P' of mass M and M' and velocities V and V' 
respectively.  Let the collision be modelled by the collision of particles of no size at a 
distance r from a point O. 
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Let I = mr2 be the moment of inertia of P about any axis of rotation L through O. 
 
Let I' = m'r2 be the equivalent moment of inertia of P'. 
 
As a result of the collision P imparts an impulse, that is a change of momentum to P'.  By 
the conservation of linear momentum P' imparts a change in momentum to P that is equal 
and opposite to this impulse.  Thus 
 

' '
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multiplying both sides by r: 
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Thus demonstrating conservation of angular momentum. 
 
 
Rotational kinetic energy 
 
Just as the kinetic energy of an object with linear momentum is 
 

21
2E mv  

 
so the rotational kinetic energy of an object with angular momentum will be 
 

21
2 I

Where I moment of inertia

and angular velocity
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Also, in any collision, kinetic energy must be conserved.  Likewise, if a rotating object 
slows down, so that it loses rotational kinetic energy, then that energy is converted to other 
forms of energy, without loss. 
 
The use of energy in solving problems is illustrated by the next example. 
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Example 
 

A uniform square lamina of mass 2m and side l is hinged along one edge, and thus 
is free to rotate about a fixed, smooth, horizontal axis which coincides with a side 
of the lamina.  The lamina is hanging in equilibrium when a particle of mass 5m 
moving with speed v in a direction perpendicular to the plane of the lamina strikes 
it at its centre of mass.  The particle sticks to the lamina.  Find, in terms of v and a, 
the angular speed of the lamina immediately after the impact. 

 Hence show that the lamina will perform complete revolutions if 2 322

75
v lg . 

 
 Solution 
 

 

c

v2m
5mI

I
centre of mass

l

 
 
 The side of the lamina is l so the distance of the centre of mass from the hinge is  
 

 
2

l
d   

 
The moment of inertia of the lamina is given by the parallel axis theorem 

 
 2I I 2c md   
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Since the moment of inertia of a lamina of side  is 

2
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 The particle of mass 5m is travelling with a velocity of v.  At impact its distance 

from the hinge is 
2

l
, so its angular momentum at that instant, using the equation 

 
 moment of momentum = linear momentum x perpendicular distance 
 
 is 

 J 5
2

l
mv    

 
  

 
 This is imparted to the angular momentum of the combined lamina and particle 

after the collision.  By the principle of conservation of angular momentum we 
obtain 
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To perform complete revolutions the lamina has to reach the uppermost position.  

 
 At impact the moment of inertia of the particle is 
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By the conservation of the energy we find that the rotational kinetic energy of the 
combined lamina and particle at impact must be greater than the gravitational 
potential energy of the centre of mass at the uppermost position.  Thus 
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