Continuous Probability Distributions

Prerequisites

You should be able to integrate.

Example (1)

Find the integral of $f(x)=0.5-0.125 x$ from $x=0$ to $x=4$.

Solution

$$
\begin{aligned}
I & =\int_{0}^{4} 0.5-0.125 x d x \\
& =\left[0.5 x-0.0625 x^{2}\right]_{0}^{4} \\
& =2-1 \\
& =1
\end{aligned}
$$

You should have studied discrete probability distributions and be aware of the distinction between the terms discrete and continuous. A continuous variable is a random variable whose values are not separated from each other. This means that between any two values, a and b, there exists a third value.

Example (2)

Classify the following variables as either discrete or continuous.
(a) The number of time it takes to obtain a 6 when throwing a fair cubical dice.
(b) The length of rivers in Africa.
(c) The number of defective components in a box.
(d) The mass of planets in the solar system.

Solution
(a) Discrete
(b) Continuous
(c) Discrete
(d) Continuous

In this chapter we shall be concerned with variables that take continuous values. They are called continuous variables.

Example (3)

What is required for a variable to be a random variable?

Solution

The term random indicates that to each value that the variable takes there is assigned a probability. The sum of all the probabilities must obey the law of total probability and so must equal 1.

Example (4)

(a) Find $I=\int_{2}^{2} 0.2 x d x$.
(b) Let
$f(x)=0.2 x \quad 0 \leq x \leq 5$
$f(x)=0 \quad$ otherwise
(i) Find $f(2)$.
(ii) Let X be a continuous random variable defined on an interval that contains the value $x=2$. Explain why the expression $P(X=2)=0.4$ must be false. Hint: it would be meaningful and possibly true if X were a discrete random variable.

Solution
(a) $I=\int_{2}^{2} 0.2 x d x=\left[0.01 x^{2}\right]_{2}^{2}=0$
(b) \quad (i) $\quad f(2)=0.4$
(ii) Because X is a continuous variable it does not makes sense to assign a probability greater than 0 to a specific value that X can take. This is because the values are not discrete and therefore not cut off from each other. It is not possible to isolate the value $x=2$ from the neighbourhood of other values that surround it. The value $x=2$ is continuous with other values. Therefore, $P(X=2)=0.4$ is false. It is only possible to assign probabilities to an interval of values. Thus $P(1.9 \leq X \leq 2.1) \neq 0$ is meaningful and possibly true. On the other hand, it is meaningful and true that $P(X=2)=0$ because as part (a)
shows any integral from 2 to 2 is zero. Strictly speaking for any continuous variable X the probability that $X=a$ where a is any discrete value is 0 . Hence $P(X=a)=0$ is always true for any continuous random variable X.

For continuous probability distributions probabilities shall be assigned to intervals. The probability will take the form $P(a<X<b)=\int_{a}^{b} f(x) d x$ where $f(x)$ is a function of a specific type that we call a probability density function. Because $\int_{a}^{a} f(x) d x=0$ for any function f whatsoever, then for a continuous probability distribution it is not possible to draw a distinction between the expressions $<$ and \leq in a statement about probability. Thus $P(a<X<b)=P(a \leq X \leq b)=P(a \leq X<b)=P(a<X \leq b)=\int_{a}^{b} f(x) d x$.

Probability density function

Definition of a probability density function

Let $f(x)$ be a continuous function. If

$$
\begin{equation*}
f(x) \geq 0 \text { for all } x \tag{1}
\end{equation*}
$$

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

then $f(x)$ defines a continuous probability density function. The condition $f(x) \geq 0$ for all x is necessary because we cannot have negative probabilities.

Probability

The probability that X takes a value x in the interval $a<x<b$ is $P(a<X<b)=\int_{a}^{b} f(x) d x$.

Example (5)

Let
$f(x)=0.5-0.125 x \quad$ for $0 \leq x \leq 4$
$f(x)=0 \quad$ otherwise
(a) Show that $f(x)$ is a probability density function
(b) Find the probability that $2 \leq x \leq 3$.
(c) Sketch the function $f(x)$.

Solution
(a) We showed already in example (1) that

$$
I=\int_{0}^{4} 0.5-0.125 x d x=\left[0.5 x-0.0625 x^{2}\right]_{0}^{4}=1
$$

Since $f(x)>0$ for all x, then f is a probability density function.
(b) $\quad P(2 \leq x \leq 3)=\int_{2}^{3} 0.5-0.125 x . d x$

$$
\begin{aligned}
& =\left[0.5 x-0.0625 x^{2}\right]_{2}^{3} \\
& =1.5-0.5625-(1-0.25) \\
& =0.1875
\end{aligned}
$$

(c) The graph of $y=f(x)$ a straight line. The area of the triangle under the line is 1.

In this example the probability density function $f(x)$ is the piecewise addition of three parts.
$f(x)=0$
if $x<0$
$f(x)=0.5-0.125 x$
if $0 \leq x \leq 4$
$f(x)=0$
if $x>0$

Because $f(x)$ has been constructed from "pieces", we say it has been defined piecewise. Probability density functions can be constructed from all sorts of pieces - each piece specified by a different function. This is illustrated by the following example.

Example (6)

Show that the function
$f(x)= \begin{cases}0 & \text { if } x<0 \\ \frac{1}{2} \sin x & \text { if } 0 \leq x \leq \frac{1}{2}+1 \\ \frac{1}{2} & \text { if } \frac{\pi}{2}<x \leq \frac{\pi}{2}+1 \\ 0 & \text { if } x>\frac{\pi}{2}+1\end{cases}$
is a probability density function, and sketch its curve.

Solution

$$
\begin{aligned}
\int f(x) d x & =\int_{0}^{\pi / 2} \frac{1}{2} \sin x d x+\int_{\pi / 2}^{\pi / 2+1} \frac{1}{2} d x \\
& =\left[-\frac{1}{2} \cos x\right]_{0}^{\pi / 2}+\left[\frac{1}{2} x\right]_{\pi / 2}^{\pi / 2+1} \\
& =0+\frac{1}{2}+\frac{1}{2}\left(\frac{\pi}{2}+1\right)-\frac{1}{2} \times \frac{\pi}{2} \\
& =1
\end{aligned}
$$

Since $f(x)>0$ for all x, then f is a pdf (probability density function). Its graph is as follows.

Example (9)

A continuous random variable X has probability density function
$f(x)=k x(4-x)$
$f(x)=0$
$0 \leq x \leq 4$
$f(x)=0$
otherwise

Find the value of k.

Solution
Since f is a probability density function then $\int_{-\infty}^{\infty} f(x) d x=1$. As $f(x)$ takes the value 0 outside the interval $0 \leq x \leq 4$

$$
\begin{aligned}
& \int_{0}^{4} k x(4-x) d x=1 \\
& \int_{0}^{4} 4 k x-k x^{2} d x=1 \\
& {\left[2 k x^{2}-\frac{k x^{3}}{3}\right]_{0}^{4}=1} \\
& 32 k-\frac{64 k}{3}=1 \\
& k\left(\frac{32}{3}\right)=1 \\
& k=\frac{3}{32}
\end{aligned}
$$

Expectation of a continuous probability distribution

For a discrete probability distribution, the expectation is defined to be
$E(X)=$ Sum for all values (value \times expected probability)
$E(X)=\sum x P(X=x)$
Where $P(X=x)$ is the probability that the random variable X takes the value x. We will extend this definition to a continuous distribution. If X is a continuous random variable having probability density function $f(x)$ then
$E(x)=\int_{-\infty}^{\infty} x f(x) d x$
The expectation $E(x)$ may also be call the mean of the distribution.

Example (10)

The continuous random variable X has probability density function given by
$f(x)=k x^{2} \quad 0 \leq x \leq 3$
$f(x)=0 \quad$ otherwise
(a) \quad Find $k . \quad$ (b) \quad Show that $E(x)=\frac{9}{4}$

Solution
(a) $\int_{0}^{3} f(x) d x=1$

$$
\begin{aligned}
& \int_{0}^{3} k x^{2} \cdot d x=1 \\
& {\left[\frac{k x^{3}}{3}\right]_{0}^{3}=1} \\
& 9 k=1 \\
& k=\frac{1}{9}
\end{aligned}
$$

(b) $\quad E(x)=\int_{0}^{3} x f(x) d x$

$$
\begin{aligned}
& =\int_{0}^{3} x \frac{x^{2}}{9} d x \\
& =\int_{0}^{3} \frac{x^{3}}{9} d x \\
& =\left[\frac{x^{4}}{36}\right]_{0}^{3} \\
& =\frac{81}{36} \\
& =\frac{9}{4}
\end{aligned}
$$

Variance of a continuous probability distribution

For a discrete probability distribution we define the variance by
$E\left(X^{2}\right)=\frac{\text { Sum for all values (Square of expected values } \times \text { expected probability) }}{n}$
$E\left(X^{2}\right)=\sum\left(x_{i}\right)^{2} P\left(X=x_{i}\right)$
$\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}$
We generalise this to a continuous probability density function so that if X is a continuous random variable having probability density function $f(x)$ then
$E\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) d x \quad \operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}$

Example (11)

X is a continuous random variable with uniform rectangular distribution defined on the interval $(5,20)$.
(a) Sketch the graph of the distribution.
(b) Define the pdf that gives rise to X.
(c) Find $E(X)$ and $\operatorname{Var}(X)$.

Solution
(a) A uniform rectangular distribution means that $f(x)=$ constant on the interval on which it is defined. Since the width of the interval $=15$, we have $f(x)=\frac{1}{15}$.

(b) $\quad f(x)=\frac{1}{15} \quad 5 \leq x \leq 20$
$f(x)=0 \quad$ otherwise
(c)

$$
\begin{aligned}
& E(x)=\int_{5}^{20} x f(x) d x=\int_{5}^{20} \frac{1}{15} x d x=\left[\frac{x^{2}}{30}\right]_{5}^{20}=\frac{20^{2}}{30}-\frac{5^{2}}{30}=\frac{375}{30}=\frac{25}{2} \\
& E\left(x^{2}\right)=\int_{5}^{20} x^{2} f(x) \cdot d x=\int_{5}^{20} \frac{x^{2}}{15} \cdot d x=\left[\frac{x^{3}}{45}\right]_{5}^{20}=\frac{20^{3}}{45}-\frac{5^{3}}{45}=\frac{7875}{45}=175 \\
& \operatorname{Var}(x)=E\left(x^{2}\right)-[E(x)]^{2}=175-\left(\frac{25}{2}\right)^{2}=\frac{760-625}{4}=\frac{75}{4}
\end{aligned}
$$

Cumulative distribution function

For a discrete random variable cumulative frequencies and probabilities are found by adding together frequencies or probabilities up to a given value. For instance, given the discrete probability distribution

x	0	1	2	3	4
$P(X=x)$	$\frac{1}{10}$	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{1}{5}$	$\frac{1}{10}$

The cumulative probabilities are

x	0	1	2	3	4
cumulative probability	$\frac{1}{10}$	$\frac{3}{10}$	$\frac{7}{10}$	$\frac{9}{10}$	1

For a continuous probability distribution with probability density function $f(x)$ the probabilities are given by areas under the curve $y=f(x)$. Thus, the cumulative probability to a given value t is the area under curve $y=f(x)$ from $-\infty$ to t.

Hence if X is a random variable with probability density function $f(x)$ then the cumulative distribution function of X is given by
$F(t)=P(X \leq t)=\int_{0}^{t} f(x) d x$

Example (12)

A continuous random variable X has probability density function
$f(x)=\frac{1}{8}(6-x) \quad 1 \leq x \leq 3$
$f(x)=0 \quad$ otherwise
Find the cumulative distribution function for X.

Solution

$$
\begin{aligned}
F(t) & =\int_{-\infty}^{t} f(x) d x \\
& =\int_{1}^{t} \frac{1}{8}(6-x) d x \\
& =\left[\frac{3}{4} x-\frac{x^{2}}{16}\right]_{1}^{t} \\
& =\frac{3}{4} t-\frac{t^{2}}{16}-\left(\frac{3}{4}-\frac{1}{16}\right) \\
& =\frac{3 t}{4}-\frac{t^{2}}{16}-\frac{11}{16} \\
F(t) & = \begin{cases}0 & \text { if } x<1 \\
\frac{3}{4} t-\frac{t^{2}}{16}-\frac{11}{16} & \text { for } 1 \leq t \leq 3 \\
1 & 1 \text { if } x>3\end{cases}
\end{aligned}
$$

Medians, quartiles and percentiles

The median of a probability distribution is that value that divides the distribution into two halves. That is, it is the value of the variable X such that the cumulative probability of X up to that value is $\frac{1}{2}$. Let m denote the median value. Then, if $F(t)$ is the cumulative distribution function for $X, F(m)=\frac{1}{2}$

If $f(x)$ is the probability density function for X then $\int_{0}^{m} f(x) d x=\frac{1}{2}$.

Example (13)

A random variable X has probability density function given by
$f(x)= \begin{cases}\frac{2}{3} x & 0 \leq x \leq 1 \\ \frac{2}{3} & 1 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}$
Find the cumulative distribution function for X and find the median of x.

Solution

$$
\begin{aligned}
F(t) & =\int_{0}^{t} \frac{2}{3} x d x \\
& =\frac{t^{2}}{3} \\
F(t) & =\frac{1}{3}+\int_{1}^{t} \frac{2}{3} d x \quad \text { if } 0 \leq t \leq 1 \\
& =\frac{1}{3}+\frac{2 t}{3}-\frac{2}{3} \\
& =\frac{2 t}{3}-\frac{1}{3} \\
F(t) & =1 \leq t \leq 2 \\
F(t) & = \begin{cases}\frac{t}{3} & \text { for } 0 \leq t \leq 1 \\
\frac{2 t}{3}-\frac{1}{3} & \text { for } 1 \leq t \leq 2 \\
1 & \text { for } t>2\end{cases}
\end{aligned}
$$

For the median $F(m)=\frac{1}{2}$
$\frac{2 m}{3}-\frac{1}{3}=\frac{1}{2}$
$\frac{2 m}{3}=\frac{5}{6}$
$m=\frac{5}{4}$

The first (lower) and third (upper) quartiles are the values t_{1} and t_{2} such that $F\left(t_{1}\right)=\frac{1}{4}$ and $F\left(t_{3}\right)=\frac{3}{4}$
where $F(t)$ is the cumulative probability function.
A percentile is a value of t such that $F(t)$ is equal to a given percentage of the cumulative distribution.

Example (14)

The continuous random variable X has cumulative distribution function F given by
$F(x)= \begin{cases}0 & \text { for } x<0 \\ \frac{1}{10}\left(\frac{x^{2}}{2}+x^{3}\right) & \text { for } 0 \leq x \leq 2 \\ 1 & \text { otherwise }\end{cases}$
(a) Evaluate $P(0.5 \leq X \leq 1.2)$.
(b) Given that the lower quartile of X. lies between 1.20 and 1.21 find by trial and improvement the value of the lower quartile correct to 3 decimal places.
(c) Find an expression for $f(x)$ valid for $0 \leq x \leq 2$, where f denotes the probability density function of X..
(d) Evaluate $E(X)$.

Solution

(a) $\quad F(0.5)=\frac{1}{10}\left(\frac{0.5^{2}}{2}+0.5^{3}\right)=0.025$
$F(1.2)=\frac{1}{10}\left(\frac{1.2^{2}}{2}+1.2^{3}\right)=0.2448$
$P(0.5 \leq X \leq 1.2)=F(1.2)-F(0.5)=0.2448-0.025=0.2198$
(b) The lower quartile if the value t_{1} such that $F\left(t_{1}\right)=\frac{1}{4}$
$F(1.2)=0.2448$
$F(1.21)=0.2503 \ldots$
$F(1.205)=0.2475 \ldots$
$F(1.208)=0.2492 \ldots$
$F(1.209)=0.2498 \ldots$
$F(1.2095)=0.2500 \ldots$
$t_{1}=1.209$ (3 d.p.)
(c) Since $F(t)=\int_{0}^{t} f(x) d x$
$f(x)$ is the derivative of $F(x)$
$f(x)=\frac{d}{d x}\left(\frac{1}{10}\left(\frac{x^{2}}{2}+x^{3}\right)\right)=\frac{1}{10} x+3 x^{2}=\frac{1}{10} x(1+3 x)$ for $0 \leq x \leq 2$
(d) $E(X)=\int_{0}^{2} x f(x) d x$

$$
\begin{aligned}
& =\int_{0}^{2} x\left(\frac{1}{10} x(1+3 x)\right) d x \\
& =\frac{1}{10} \int_{0}^{2} x^{2}+3 x^{4} d x \\
& =\frac{1}{10}\left[\frac{1}{3} x^{3}+\frac{3}{4} x^{4}\right]_{0}^{2} \\
& =\frac{1}{10}\left(\frac{8}{3}+12\right) \\
& =\frac{22}{15}
\end{aligned}
$$

