Cross product of two vectors

In two dimensions any two vectors define a plane.

We wish to find a vector that is perpendicular to the two vectors $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$. This vector is the cross product of $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ and is denoted $\underline{\mathbf{a}} \times \underline{\mathbf{b}}$

Let θ be the angle between the vectors $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$. Note that θ need not be a right angled triangle. Then $\underline{\mathbf{a}} \times \underline{\mathbf{b}}$ is defined to be
$\underline{\mathbf{a}} \times \underline{\mathbf{b}}=\{|\underline{\mathbf{a}}| \underline{\mathbf{b}} \mid \sin \theta\} \underline{\hat{\mathbf{c}}}$
where $\underline{\hat{\mathbf{c}}}$ is a unit vector perpendicular to both $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$.
We find the cross product of two vectors in three dimensions by a technique of expanding a determinant as follows.

Suppose
$\underline{\mathbf{a}}=a_{1} \underline{\mathbf{i}}+a_{2} \underline{\mathbf{j}}+a_{3} \underline{\mathbf{k}}$
and
$\underline{\mathbf{b}}=b_{1} \underline{\mathbf{i}}+b_{2} \underline{\mathbf{j}}+b_{3} \underline{\mathbf{k}}$

Then

$$
\begin{aligned}
\underline{\mathbf{a}} \times \underline{\mathbf{b}} & =\left|\begin{array}{ccc}
\underline{\mathbf{i}} & \underline{\mathbf{j}} & \underline{\mathbf{k}} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
& =\underline{\mathbf{i}}\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|+\underline{\mathbf{j}}\left|\begin{array}{ll}
a_{3} & a_{1} \\
b_{3} & b_{1}
\end{array}\right|+\underline{\mathbf{k}}\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \\
& =\underline{\mathbf{i}}\left(a_{2} b_{3}-a_{3} b_{2}\right)+\underline{\mathbf{j}}\left(a_{3} b_{1}-a_{1} b_{3}\right)+\underline{\mathbf{k}}\left(a_{1} b_{2}-a_{2} b_{1}\right)
\end{aligned}
$$

Example

Find $\underline{\mathbf{a}} \times \underline{\mathbf{b}}$ when
$\underline{\mathbf{a}}=2 \underline{\mathbf{i}}-3 \underline{\mathbf{j}}+4 \underline{\mathbf{k}}$ and $\underline{\mathbf{b}}=-\underline{\mathbf{i}}-\underline{\mathbf{j}}-3 \underline{\mathbf{k}}$
Solution

$$
\begin{aligned}
\underline{\mathbf{a}} \times \underline{\mathbf{b}} & =\left|\begin{array}{ccc}
\underline{\mathbf{i}} & \underline{\mathbf{j}} & \underline{\mathbf{k}} \\
2 & -3 & 4 \\
-1 & -1 & -3
\end{array}\right| \\
& =\underline{\mathbf{i}}\left|\begin{array}{cc}
-3 & 4 \\
-1 & -3
\end{array}\right|+\underline{\mathbf{j}}\left|\begin{array}{cc}
4 & 2 \\
-3 & -1
\end{array}\right|+\underline{\mathbf{k}}\left|\begin{array}{cc}
2 & -3 \\
-1 & -1
\end{array}\right| \\
& =\underline{\mathbf{i}}(9+4)+\underline{\mathbf{j}}(-4+6)+\underline{\mathbf{k}}(-2-3) \\
& =13 \underline{\mathbf{i}}+\underline{2} \underline{\mathbf{j}}-5 \underline{\mathbf{k}}
\end{aligned}
$$

To confirm that this is the case we will find the dot (scalar) products of $\underline{\mathbf{a}} \times \underline{\mathbf{b}}$ with $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ separately:
$(\underline{\mathbf{a}} \times \underline{\mathbf{b}}) \cdot \underline{\mathbf{a}}=(13,2,-5) \cdot(2,-3,4)=26-6-20=0$

Hence, $(\underline{\mathbf{a}} \times \underline{\mathbf{b}})$ and $\underline{\mathbf{a}}$ are perpendicular.

Similarly

$$
(\underline{\mathbf{a}} \times \underline{\mathbf{b}}) \cdot \underline{\mathbf{b}}=(13,2,-5) \cdot(-1,-1,-3)=13-2+15=0
$$

Hence, $(\underline{\mathbf{a}} \times \underline{\mathbf{b}})$ and $\underline{\mathbf{b}}$ are perpendicular.
When the cross product has not been studied a perpendicular vector to two vectors must be found by using the properties of the dot product and solving a system of simultaneous equations.

Example

For example, find a vector perpendicular to $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ when

$$
\begin{aligned}
& \underline{\mathbf{a}}=2 \underline{\mathbf{i}}-3 \underline{\mathbf{j}}+4 \underline{\mathbf{k}} \\
& \underline{\mathbf{b}}=-\underline{\mathbf{i}}-\underline{\mathbf{j}}-3 \underline{\mathbf{k}}
\end{aligned}
$$

Solution

Let the vector $\underline{\mathbf{r}}=a \underline{\mathbf{i}}+b \underline{\mathbf{j}}+c \underline{\mathbf{k}}$ be perpendicular to $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$.

Then $\underline{\mathbf{r}} \cdot \underline{\mathbf{a}}=0$ and $\underline{\mathbf{r}} \cdot \underline{\mathbf{b}}=0$

Hence
$(a, b, c) \cdot(2,-3,4)=0$
$2 a-3 b+4 c=0$
and
$(a, b, c) \cdot(-1,-1,-3)=0$
$-a-b-3 c=0$

On multiplying (2) $\times 2$
$-2 a-2 b-6 c=0$
Then (1) $+(3)$ gives:-
$-5 b-2 c=0$
$2 c=-5 b$
If $c=5 b=-2$ and $a=-13$
Hence $\underline{\mathbf{r}}=-13 \underline{\mathbf{i}}-2 \underline{\mathbf{j}}+5 \underline{\mathbf{k}}$ is perpendicular to both $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$.

The technique using determinants is easier if you know it!
The perpendicular vector to $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ is not unique. Any scalar multiple of a vector perpendicular to $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ is also perpendicular to $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$.

© blacksacademy.net

