Cross product of two vectors

In two dimensions any two vectors define a plane.

We wish to find a vector that is perpendicular to the two vectors $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$. This vector is the cross product of $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ and is denoted $\underline{\mathbf{a}} \times \underline{\mathbf{b}}$

Let θ be the angle between the vectors \underline{a} and \underline{b} . Note that θ need not be a right angled triangle. Then $\underline{a} \times \underline{b}$ is defined to be

$$\underline{\mathbf{a}} \times \underline{\mathbf{b}} = \left\{ |\underline{\mathbf{a}}| |\underline{\mathbf{b}}| \sin \theta \right\} \hat{\underline{\mathbf{c}}}$$

where $\hat{\underline{c}}$ is a unit vector perpendicular to both $\underline{\underline{a}}$ and $\underline{\underline{b}}$.

We find the cross product of two vectors in three dimensions by a technique of expanding a determinant as follows.

Suppose

 $\underline{\mathbf{a}} = a_1 \underline{\mathbf{i}} + a_2 \underline{\mathbf{j}} + a_3 \underline{\mathbf{k}}$ and

 $\underline{\mathbf{b}} = b_1 \underline{\mathbf{i}} + b_2 \underline{\mathbf{j}} + b_3 \underline{\mathbf{k}}$

Then

$$\underline{\mathbf{a}} \times \underline{\mathbf{b}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
$$= \mathbf{i} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} + \mathbf{j} \begin{vmatrix} a_3 & a_1 \\ b_3 & b_1 \end{vmatrix} + \mathbf{k} \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$
$$= \mathbf{i} (a_2 b_3 - a_3 b_2) + \mathbf{j} (a_3 b_1 - a_1 b_3) + \mathbf{k} (a_1 b_2 - a_2 b_1)$$

Example

Find $\underline{\mathbf{a}} \times \underline{\mathbf{b}}$ when

$$\underline{\mathbf{a}} = 2\underline{\mathbf{i}} - 3\underline{\mathbf{j}} + 4\underline{\mathbf{k}} \text{ and } \underline{\mathbf{b}} = -\underline{\mathbf{i}} - \underline{\mathbf{j}} - 3\underline{\mathbf{k}}$$

Solution

$$\underline{\mathbf{a}} \times \underline{\mathbf{b}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -3 & 4 \\ -1 & -1 & -3 \end{vmatrix}$$
$$= \underline{\mathbf{i}} \begin{vmatrix} -3 & 4 \\ -1 & -3 \end{vmatrix} + \underline{\mathbf{j}} \begin{vmatrix} 4 & 2 \\ -3 & -1 \end{vmatrix} + \underline{\mathbf{k}} \begin{vmatrix} 2 & -3 \\ -1 & -1 \end{vmatrix}$$
$$= \underline{\mathbf{i}} (9+4) + \underline{\mathbf{j}} (-4+6) + \underline{\mathbf{k}} (-2-3)$$
$$= 13\underline{\mathbf{i}} + 2\underline{\mathbf{j}} - 5\underline{\mathbf{k}}$$

To confirm that this is the case we will find the dot (scalar) products of $\underline{\mathbf{a}} \times \underline{\mathbf{b}}$ with $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ separately:

$$(\underline{\mathbf{a}} \times \underline{\mathbf{b}}) \cdot \underline{\mathbf{a}} = (13, 2, -5) \cdot (2, -3, 4) = 26 - 6 - 20 = 0$$

Hence, $(\underline{\mathbf{a}} \times \underline{\mathbf{b}})$ and $\underline{\mathbf{a}}$ are perpendicular.

Similarly

$$(\underline{\mathbf{a}} \times \underline{\mathbf{b}}) \cdot \underline{\mathbf{b}} = (13, 2, -5) \cdot (-1, -1, -3) = 13 - 2 + 15 = 0$$

Hence, $(\underline{\mathbf{a}} \times \underline{\mathbf{b}})$ and $\underline{\mathbf{b}}$ are perpendicular.

When the cross product has not been studied a perpendicular vector to two vectors must be found by using the properties of the dot product and solving a system of simultaneous equations.

Example

For example, find a vector perpendicular to \underline{a} and \underline{b} when

$$\underline{\mathbf{a}} = 2\underline{\mathbf{i}} - 3\underline{\mathbf{j}} + 4\underline{\mathbf{k}}$$
$$\underline{\mathbf{b}} = -\underline{\mathbf{i}} - \underline{\mathbf{j}} - 3\underline{\mathbf{k}}$$

Solution

Let the vector $\mathbf{\underline{r}} = a\mathbf{\underline{i}} + b\mathbf{j} + c\mathbf{\underline{k}}$ be perpendicular to $\mathbf{\underline{a}}$ and $\mathbf{\underline{b}}$.

Then $\underline{\mathbf{r}} \cdot \underline{\mathbf{a}} = 0$ and $\underline{\mathbf{r}} \cdot \underline{\mathbf{b}} = 0$

Hence

$$(a,b,c).(2,-3,4) = 0$$

 $2a - 3b + 4c = 0$ (1)
and
 $(a,b,c).(-1,-1,-3) = 0$
 $-a - b - 3c = 0$ (2)

On multiplying $(2) \times 2$ -2*a* - 2*b* - 6*c* = 0 Then (1)+(3) gives:--5*b* - 2*c* = 0 2*c* = -5*b* If *c* = 5 *b* = -2 and *a* = -13

Hence $\underline{\mathbf{r}} = -13\underline{\mathbf{i}} - 2\mathbf{j} + 5\underline{\mathbf{k}}$ is perpendicular to both $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$.

The technique using determinants is easier if you know it!

The perpendicular vector to $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ is not unique. Any scalar multiple of a vector perpendicular to $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ is also perpendicular to $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$.

