Curves in Euclidean Space

Curves in Euclidean space

Here we are considering curves embedded in three-dimensional Euclidean space, \mathbb{E}^{3}. Our aim here is to find an appropriate mathematical description of such a curve.

As the diagram indicates one way to proceed is by giving the Euclidean coordinates of an arbitrary point P on a curve α.

$$
P=(x, y, z)
$$

To define a curve we must allow P to move along the curve, so we shall specify P as a point moving along the curve with respect to a parameter t. This makes the coordinates of P into coordinate functions of the parameter t.

$$
P(t)=(x(t), y(t), z(t))
$$

Different values of t shall specify different points on the curve. Thus at time $t=0$ the point on the curve shall be

$$
P_{0}=P(0)=(x(0), y(0), z(0))=\left(x_{0}, y_{0}, z_{0}\right) .
$$

At $t=1$ we shall have

$$
P_{1}=P(1)=(x(1), y(1), z(1))=\left(x_{1}, y_{1}, z_{1}\right)
$$

and so forth.

The parameter t may be given a physical interpretation. One obvious interpretation is to use t to represent time. In that case the distance between two points P_{0} and P_{1} along a curve
represents the distance travelled in the given time by a particle moving along that curve. The first derivative gives the velocity of a particle travelling along the curve and the second derivative gives its acceleration. But the parameter t need not represent time, it may be completely arbitrary. Also, there is the unit speed parametrization of a curve - this is the parameter that travels along the curve at unit speed $\left(1 \mathrm{~ms}^{-1}\right)$.

Another advantage of this approach is that it allows the curve to be traversed in two different directions. If we substitute $-t$ for t in $P(t)=(x(t), y(t), z(t))$ we get the same curve travelled in the opposite direction.

Clearly $\overrightarrow{O P}$ is a vector from O to the point P on the curve. Hence, this approach turns a curve in three-dimensional Euclidean space into a continuous vector function.

So
$P(t)=\mathbf{r}(t)=(x(t), y(t), z(t))$

Example (1)

A curve in Euclidean 3-space is given by

$$
\mathbf{r}(t)=(x, y, z)=(a \cos t, a \sin t, 1)
$$

By eliminating t from $x(t)$ and $y(t)$ find the Cartesian equation linking x and y. Hence describe this curve geometrically.
Solution
$x^{2}+y^{2}=a^{2} \cos t+a^{2} \sin t=a^{2}$
$x^{2}+y^{2}=a^{2}$ is the Cartesian equation of a circle centre the origin and of radius a. We have
© blacksacademy.net

$$
\left\{\begin{array}{l}
x^{2}+y^{2}=a^{2} \\
z=1
\end{array}\right.
$$

Hence this traces out the circle centred on the z-axis of radius a in the plane $z=1$.

It is not possible to eliminate t from $(x(t), y(t), z(t))$ to get a Cartesian equation for a curve as a relationship between x, y and z. If we can by algebraic manipulations obtain a form $z=f(x, y)$ this represents a Cartesian equation for a two-dimensional surface embedded in 3dimensional Euclidean space. In the Cartesian equation $z=f(x, y)$ we see that z is a function of two variables x and y and hence describes a surface and not a curve.

Example (2)

By letting $z=0, z= \pm 1, z= \pm 2, z= \pm 3$
sketch the surface $z= \pm \sqrt{x^{2}+y^{2}}$.
Solution
We get a series of contour curves as relationships between x and y for these different values of z.

$$
\begin{array}{llll}
z=0 & \Rightarrow & x^{2}+y^{2}=0 & \Rightarrow \\
x^{2}+y^{2}=1 & & \\
z= \pm 1 & \Rightarrow & y=0 \\
z= \pm 2 & \Rightarrow & x^{2}+y^{2}=2^{2} & \\
z= \pm 3 & \Rightarrow & x^{2}+y^{2}=3^{2} &
\end{array}
$$

The surface $z= \pm \sqrt{x^{2}+y^{2}}$ is a cone generated by rotating the line $z=x$ about the z axis.
© blacksacademy.net

The vector $\mathbf{r}=\mathbf{a}+t(\mathbf{b}-\mathbf{a})$ traces out the straight line through A and B where \mathbf{a}, \mathbf{b} are the position vectors of A, B respectively.

Example (3)

Find the parametric form of the straight line between the points
$A(1,-1,0)$ and $B(0,1,-1)$ when $t=0 \mathrm{~s}$ and $t=1 \mathrm{~s}$ respectively. If t represents the time of a particle P on this curve, find the speed of P as it moves along this curve.

Solution

$$
\begin{aligned}
& \mathbf{a}=\left(\begin{array}{l}
1 \\
-1 \\
0
\end{array}\right) \mathbf{b}=\left(\begin{array}{l}
0 \\
1 \\
-1
\end{array}\right) \mathbf{b}-\mathbf{a}=\left(\begin{array}{l}
-1 \\
2 \\
-1
\end{array}\right) \\
& \mathbf{r}=\mathbf{a}+t(\mathbf{b}-\mathbf{a})=\left(\begin{array}{l}
1 \\
-1 \\
0
\end{array}\right)+t\left(\begin{array}{l}
-1 \\
2 \\
-1
\end{array}\right)=(1-t, 2 t-1,-t)
\end{aligned}
$$

The distance $|A B|=|\mathbf{b}-\mathbf{a}|=\sqrt{1^{2}+2^{2}+1^{2}}=\sqrt{6}$, which the particle traverses in 1 second.
So the speed is: speed $=\sqrt{6} \mathrm{~ms}^{-1}$

Clearly the vector $\mathbf{r}=\mathbf{a}+t(\mathbf{b}-\mathbf{a})$ is not the only parametrization of the straight line between two points A and B where \mathbf{a}, \mathbf{b} are the position vectors of A, B respectively.

Curves are continuous vector functions of a single parameter

A vector function is a mapping
$\begin{cases}\mathbb{R} & \rightarrow \mathbb{E}^{3} \\ t \mapsto \mathbf{r}(t)=\left(f_{1}(t), f_{2}(t), f_{3}(t)\right)\end{cases}$
If t is a continuous variable and f_{1}, f_{2}, f_{3} are continuous then \mathbf{r} is a continuous vector function. Curves in Euclidean space are continuous vector functions. The function $\mathbf{r}(t)=\left(t, t^{2}, t^{3}\right)$ is an example of a continuous vector function. The function $\mathbf{r}(t)=(1 / t, 1,1)$ is not continuous because there is a singularity at $t=0$ around the neighbourhood of which $1 / t$ varies from $+\infty$ to $-\infty$. In the expression
$\left\{\begin{aligned} & \mathbb{R} \rightarrow \mathbb{E}^{3} \\ & t \mapsto \mathbf{r}(t)=\left(f_{1}(t), f_{2}(t), f_{3}(t)\right)\end{aligned}\right.$
the domain of the vector function is the real line \mathbb{R}. It is not necessary for the domain to be the entire set \mathbb{R}; it may be any open subset of \mathbb{R}. Denote by I an open interval in the real line \mathbb{R}; that is $I=(a, b)$ where a, b are real numbers. Hence the parameter t is such that $a<t<b$. In order for the vector function to be continuous, it is essential that the set be open. That means that the end-points a and b are not included in the set. Thus if we let $\overrightarrow{O P}$ be a vector where O is the origin and P is the point given by the continuous vector function $\mathbf{r}(t)=\left(f_{1}(t), f_{2}(t), f_{3}(t)\right)$, then as t varies $\overrightarrow{O P}$ describes a continuous curve in Euclidean space. The vector function $\overrightarrow{O P}=\mathbf{r}(t)$ is called the parametric equation of the curve. It is not necessary that $\mathbf{r}(t)$ is a bijection (one-one) as a curve may intersect itself; for example, if t is time then at two different times t_{1}, t_{2} it is possible that $\mathbf{r}\left(t_{1}\right)=\mathbf{r}\left(t_{2}\right)$ but not $t_{1}=t_{2}$.

Example (4)

Sketch $\mathbf{r}=(3 \cos \pi t, 0, \sin \pi t)$
© blacksacademy.net

Solution

It is an ellipse in the $x z$-plane $y=0$ passing through $(\pm 3,0,0)$ and $(0,0, \pm 1)$.

Example (5)

Sketch $\mathbf{r}=(t, t,|t|)$
Solution
It is a straight-line wedge in the plane spanned by $x=y$ and the z-axis.

Example (6)

Sketch $\mathbf{r}=\left(t, t^{2}, t^{3}-t\right)$
Solution
Factorising this gives
© blacksacademy.net

$$
\mathbf{r}=\left(t, t^{2}, t^{3}-t\right)=\left(t, t^{2}, t\left(t^{2}-1\right)\right)
$$

That is
$(x, y, z)=\left(t, t^{2}, t\left(t^{2}-1\right)\right)$
If it were that $z=0$ this would describe a parabola $y=x^{2}$ in the $x y$-plane. The value of z represents the height above or below this parabola $z=x\left(x^{2}-1\right)$. This is a cubic function with roots at 0,1 and -1 . The curve lies above and below the parabola $y=x^{2}$ in the $x y$-plane.

Differentiation of continuous vector functions

First Derivative

Let $\mathbf{r}(t)=\left(f_{1}(t), f_{2}(t), f_{3}(t)\right)$ be a continuous vector function of t, then
$\frac{d \mathbf{r}}{d t}=\left(\frac{d f_{1}}{d t}, \frac{d f_{2}}{d t}, \frac{d f_{3}}{d t}\right)$
is the first derivative of $\mathbf{r}(t)$. This first derivative is also a vector. To show this we must show that $\left(\frac{d f_{1}}{d t}, \frac{d f_{2}}{d t}, \frac{d f_{3}}{d t}\right)$ is (a) a triad of scalars, (b) invariant under translation, and (c) satisfies the transformation law $\frac{d}{d t} \mathbf{r}^{\prime}=\left(a_{i j}\right) \frac{d}{d t} \mathbf{r}$ where the $a_{i j}$ are the direction cosines of $O x^{\prime} y^{\prime} z^{\prime}$ relative to $O x y z$ and $\mathbf{r}^{\prime}=\left(a_{i j}\right) \mathbf{r}$.

Proof

(a) This is self-evident.
(b) Let $\mathbf{F}(t)$ be translated by a. Thus $\mathbf{r}^{\prime}=\mathbf{a}+\mathbf{F}(t)$. Then

$$
\begin{array}{rlrl}
\frac{d \mathbf{r}^{\prime}}{d t} & =\frac{d}{d t}(\mathbf{a}+\mathbf{F}(t)) & \\
& =\frac{d}{d t} \mathbf{a}+\frac{d \mathbf{F}}{d t} & & \text { [since } \mathbf{a} \text { is a constant] } \\
& =\frac{d \mathbf{F}}{d t} & & \text { [also since } \mathbf{a} \text { is a constant] } \\
& =\left(\frac{d f_{1}}{d t}, \frac{d f_{2}}{d t}, \frac{d f_{3}}{d t}\right) & &
\end{array}
$$

(c) Let $\mathbf{A}=\left(a_{i j}\right)=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$ be the transformation matrix of the rotation of axes. Let $\mathbf{r}^{\prime}=\left(a_{i j}\right) \mathbf{r}$ where $\mathbf{r}(t)=\left(f_{1}(t), f_{2}(t), f_{3}(t)\right)$ is a vector function of t. Then

$$
\begin{aligned}
\frac{d \mathbf{r}^{\prime}}{d t} & =\frac{d}{d t}\left(a_{i j}\right) \mathbf{r} \\
& \left.=\left(a_{i j}\right) \frac{d \mathbf{r}}{d t} \quad \text { [Since the } a_{i j} \text { are constant }\right]
\end{aligned}
$$

Example (7)

Verify that the curve
$\mathbf{r}(t)=(x, y, z)=(a \cos t, a \sin t, 1) \quad$ (see example (1))
under the transformation matrix
$\left(\begin{array}{ccc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1\end{array}\right)$
which represents the transformation when a set of axes is rotated clockwise (i.e. from the x-axis to the y-axis) through an angle of $\pi / 4$ about the z-axis, obeys the transformation law $\frac{d}{d t} \mathbf{r}^{\prime}=\left(a_{i j}\right) \frac{d}{d t} \mathbf{r}$.

Solution
© blacksacademy.net

$$
\begin{aligned}
& \mathbf{r}^{\prime}=\left(a_{i j}\right) \mathbf{r}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \cos t \\
a \sin t \\
1
\end{array}\right)=\frac{a}{\sqrt{2}}\left(\begin{array}{l}
\cos t+\sin t \\
\sin t-\cos t \\
1
\end{array}\right) \\
& \frac{d}{d t} \mathbf{r}^{\prime}=\frac{d}{d t}\left\{\frac{a}{\sqrt{2}}(\cos t+\sin t, \sin t-\cos t, 1)\right\}=\frac{a}{\sqrt{2}}(\cos t-\sin t, \cos t+\sin t, 0) \\
&\left(a_{i j}\right) \frac{d}{d t} \mathbf{r}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{array}\right) \frac{d}{d t}(a \cos t, a \sin t, 1) \\
&=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{array}\right) a(-\sin t, \cos t, 0)=\frac{a}{\sqrt{2}}(\cos t-\sin t, \cos t+\sin t, 0)=\frac{d}{d t} \mathbf{r}^{\prime}
\end{aligned}
$$

Higher derivatives

The second and higher derivatives are defined accordingly. For example, if
$\mathbf{r}(t)=\left(f_{1}(t), f_{2}(t), f_{3}(t)\right)$ then $\frac{d^{2}}{d t^{2}} \mathbf{r}=\frac{d}{d t}\left(\frac{d}{d t} \mathbf{r}\right)=\left(\frac{d^{2} f_{1}}{d t^{2}}, \frac{d^{2} f_{2}}{d t^{2}}, \frac{d^{2} f_{3}}{d t^{2}}\right)$.

Example (8)

Find $\frac{d \mathbf{r}}{d r}$ and $\frac{d^{2} \mathbf{r}}{d t^{2}}$ where
(i) $\quad \mathbf{r}=(\cos \pi t, 2 \sin \pi t, t)$
(ii) $\quad \mathbf{r}=\left(t, e^{t}, e^{-t}\right)$

Solution
(i) $\quad \mathbf{r}=(\cos \pi t, 2 \sin \pi t, t)$

$$
\begin{aligned}
& \frac{d \mathbf{r}}{d t}=(-\pi \sin \pi t, 2 \pi \cos \pi t, 1) \\
& \frac{d^{2} \mathbf{r}}{d t^{2}}=\left(-\pi^{2} \cos \pi t,-2 \pi^{2} \sin \pi t, 0\right)
\end{aligned}
$$

(ii) $\quad \mathbf{r}=\left(t, e^{t}, e^{-t}\right)$
© blacksacademy.net

$$
\begin{aligned}
& \mathbf{r}^{\prime}=\left(1, e^{t},-e^{-t}\right) \\
& \mathbf{r}^{\prime \prime}=\left(0, e^{t}, e^{-t}\right)
\end{aligned}
$$

Example (9)

Given $\frac{d \mathbf{r}}{d t}=\left(-e^{-t}(\cos t+\sin t), e^{-t}(\cos t-\sin t), 0\right)$ and $\mathbf{r}(0)=(1,0,0)$ find $\mathbf{r}(t)$.
Solution
Integrating $\frac{d \mathbf{r}}{d t}$ by inspection or by parts

$$
\mathbf{r}(t)=\left(e^{-t} \cos t+A, e^{-t} \sin t+B, C\right)
$$

When $t=0$ we have $C=0$ and

$$
\begin{array}{ll}
1+A=1 \Rightarrow & A=0 \\
0+B=0 \Rightarrow & B=0
\end{array}
$$

Hence $\mathbf{r}(t)=\left(e^{-t} \cos t, e^{-t} \sin t, 0\right)$. It is a spiral in the $x y$-plane that infinitely spirals in.

Differentiation Rules

$\frac{d}{d t}(\mathbf{a}+\mathbf{b})=\frac{d \mathbf{a}}{d t}+\frac{d \mathbf{b}}{d t}$
$\frac{d}{d t}(f \mathbf{a})=\frac{d f}{d t} \mathbf{a}+f \frac{d \mathbf{a}}{d t}$
$\frac{d}{d t}(\mathbf{a} \cdot \mathbf{b})=\frac{d \mathbf{a}}{d t} \cdot \mathbf{b}+\mathbf{a} \cdot \frac{d \mathbf{b}}{d t}$
$\frac{d}{d t}(\mathbf{a} \times \mathbf{b})=\frac{d \mathbf{a}}{d t} \times \mathbf{b}+\mathbf{a} \times \frac{d \mathbf{b}}{d t}$
These are all proven by writing out the derivatives in component form.
© blacksacademy.net

Orthogonality result

Let $\hat{\mathbf{a}}$ be a unit vector. An important result is that the vector $\frac{d \hat{\mathbf{a}}}{d t}$ is perpendicular to $\hat{\mathbf{a}}$, provided that $\frac{d \hat{\mathbf{a}}}{d t} \neq 0$ and $\hat{\mathbf{a}} \neq 0$. To show this we start with the identity
$\hat{\mathbf{a}} \cdot \hat{\mathbf{a}}=|\hat{\mathbf{a}}|^{2}=1 \quad$ since $|\hat{\mathbf{a}}|=1$
Differentiating this gives
$\frac{d}{d t}(\hat{\mathbf{a}} \cdot \hat{\mathbf{a}})=0$
$\frac{d \hat{\mathbf{a}}}{d t} \cdot \hat{\mathbf{a}}+\hat{\mathbf{a}} \cdot \frac{d \hat{\mathbf{a}}}{d t}=0$
$2 \frac{d \hat{\mathbf{a}}}{d t} \cdot \hat{\mathbf{a}}=0$
So, if $\frac{d \hat{\mathbf{a}}}{d t} \neq 0$ this implies that $\frac{d \hat{\mathbf{a}}}{d t}$ and $\hat{\mathbf{a}}$ are vectors that are perpendicular.

Remark: this would apply if a were any vector of constant length, so that the length of a is not a function of the parameter t. However, if the length of a varies with the parameter t then the result does not follow.

Interpretation of the first derivative as the tangent to a curve

Let $\mathbf{r}(t)$ be a continuous curve, and let $P P_{0}$ be a cord joining the points P and P_{0} on this curve. The tangent at P_{0} is the gradient of this cord in the limit as $P \rightarrow P_{0}$.

That is the tangent is $\lim _{t \rightarrow t_{0}}\left\{\frac{P P_{0}}{t-t_{0}}\right\}$. However
© blacksacademy.net

$$
\begin{aligned}
\frac{d \mathbf{r}}{d t} & =\lim _{t \rightarrow t_{0}}\left\{\frac{x(t)-x\left(t_{0}\right)}{t-t_{0}}, \frac{y(t)-y\left(t_{0}\right)}{t-t_{0}}, \frac{z(t)-z\left(t_{0}\right)}{t-t_{0}}\right\} \\
& =\lim _{t \rightarrow t_{0}}\left\{\frac{\mathbf{r}(t)-\mathbf{r}\left(t_{0}\right)}{t-t_{0}}\right\} \\
& =\lim _{t \rightarrow t_{0}}\left\{\frac{P P_{0}}{t-t_{0}}\right\}
\end{aligned}
$$

So $\frac{d \mathbf{r}}{d t}$ is tangent to the curve, C. Furthermore, $\frac{d \mathbf{r}}{d t}$ points in the direction in which t increases; i.e. in the direction in which the curve C is traced out as t increases. Let $\mathbf{n}=\frac{d \mathbf{r}}{d t}$ then \mathbf{n} is tangent to C and $\hat{\mathbf{n}}=\frac{\mathbf{n}}{|\mathbf{n}|}$ is a unit tangent vector to C. We proved above that if $\hat{\mathbf{a}}$ is a unit vector then the vector $\frac{d \hat{\mathbf{a}}}{d t}$ is perpendicular to $\hat{\mathbf{a}}$, provided that $\frac{d \hat{\mathbf{a}}}{d t} \neq 0$. This means that the derivative of $\hat{\mathbf{n}}$, which is $\frac{d}{d t} \hat{\mathbf{n}}$ is perpendicular to $\hat{\mathbf{n}}$.

Example (10)

Let $\mathbf{r}=(\cos t, \sin t, t)$
Show that the vectors $\hat{\mathbf{n}}=\hat{\mathbf{r}}^{\prime}(t)$ and $\hat{\mathbf{n}}^{\prime}=\frac{d}{d t} \hat{\mathbf{n}}(t)$ are orthogonal.
Solution
$\mathbf{r}=(\cos t, \sin t, t)$
$\mathbf{r}^{\prime}=\frac{d \mathbf{r}}{d t}=(-\sin t, \cos t, 1)$
$\left|\mathbf{r}^{\prime}\right|=\sin ^{2} t+\cos ^{2} t+1=2$
$\hat{\mathbf{n}}=\frac{\mathbf{r}^{\prime}}{\left|\mathbf{r}^{\prime}\right|}=\frac{1}{\sqrt{2}}(-\sin t, \cos t, 1)$
$\hat{\mathbf{n}}^{\prime}=\frac{d}{d t} \hat{\mathbf{n}}=\frac{1}{\sqrt{2}}(-\cos t, \sin t, 0)$
$\hat{\mathbf{n}} \cdot \hat{\mathbf{n}}^{\prime}=\frac{1}{\sqrt{2}}(-\sin t, \cos t, 1) \cdot \frac{1}{\sqrt{2}}(-\cos t, \sin t, 0)=0$
Therefore $\hat{\mathbf{n}}$ and $\hat{\mathbf{n}}^{\prime}$ are orthogonal

Example (11)

(a) Find the unit tangent $\hat{\mathbf{T}}$ to the curve $\mathbf{r}(t)=\left(1, t, \frac{t^{2}}{2}\right)$.
(b) Show that $\hat{\mathbf{T}}$ and $\frac{d}{d t} \hat{\mathbf{T}}$ where $\hat{\mathbf{T}}$ is the vector found in part (a) are orthogonal.
Solution
(a) $\quad \mathbf{T}=\frac{d \mathbf{r}}{d t}=(0,1, t)$

$$
|\mathbf{T}|=\sqrt{1+t^{2}}
$$

$$
\hat{\mathbf{T}}=\frac{1}{\sqrt{1+t^{2}}}(0,1, t)
$$

(b)

$$
\begin{aligned}
\hat{\mathbf{T}} & =\left(0, \frac{1}{\left(1+t^{2}\right)^{\frac{1}{2}}}, \frac{t}{\left(1+t^{2}\right)^{\frac{1}{2}}}\right) \\
\frac{d}{d t} \hat{\mathbf{T}} & =\left(0, \frac{-t}{\left(1+t^{2}\right)^{\frac{3}{2}}}, \frac{1+t^{2}-t^{2}}{\left(1+t^{2}\right)^{\frac{3}{2}}}\right)=\left(0, \frac{-t}{\left(1+t^{2}\right)^{\frac{3}{2}}}, \frac{1}{\left(1+t^{2}\right)^{\frac{3}{2}}}\right) \\
\hat{\mathbf{T}} \cdot \frac{d}{d t} \hat{\mathbf{T}} & =\left(0, \frac{1}{\left(1+t^{2}\right)^{\frac{1}{2}}}, \frac{t}{\left(1+t^{2}\right)^{\frac{1}{2}}}\right) \cdot\left(0, \frac{-t}{\left(1+t^{2}\right)^{\frac{3}{2}}}, \frac{1}{\left(1+t^{2}\right)^{\frac{3}{2}}}\right) \\
& =0-\frac{t}{\left(1+t^{2}\right)^{2}}+\frac{t}{\left(1+t^{2}\right)^{2}}=0
\end{aligned}
$$

Hence $\hat{\mathbf{T}}$ and $\frac{d}{d t} \hat{\mathbf{T}}$ are orthogonal.

Smooth, piecewise smooth and simple curves

Smooth curve

Intuitively, a smooth curve is one that does not suddenly change direction. Thus a curve $\mathbf{r}(t)=(x(t), y(t), z(t))$ in the interval $t_{0} \leq t \leq t_{1}$ is smooth if everywhere in this interval the derivative $\frac{d \mathbf{r}}{d t}$ exists.

Piecewise smooth

A piecewise smooth curve is made up of pieces of smooth curves joined end to end.

Simple open curve

A simple open curve is one that does not cross itself. In this case the function
$\mathbf{r}(t)=(x(t), y(t), z(t))$
is one-one (a bijection). That is, each point of $\mathbf{r}(t)$ corresponds to just one value.

Simple closed curve

A simple closed curve is a curve whose end points coincide but all other points correspond to just one value of t.

Example (12)

Sketch the curve with parametric equation

$$
\mathbf{r}(t)=(t,|\cos t|, 0) \quad-3 \pi / 2 \leq t \leq 3 \pi / 2
$$

and show that it is piecewise smooth.
Solution
The sketch is
© blacksacademy.net

As the sketch shows $\mathbf{r}(t)$ is made of three smooth curves

$$
\begin{array}{ll}
\mathbf{r}_{1}(t)=(t,-\cos t, 0) & -3 \pi / 2 \leq t \leq-\pi / 2 \\
\mathbf{r}_{2}(t)=(t, \cos t, 0) & -\pi / 2 \leq t \leq \pi / 2 \\
\mathbf{r}_{1}(t)=(t,-\cos t, 0) & \pi / 2 \leq t \leq 3 \pi / 2
\end{array}
$$

Change of parameter

The curve $\mathbf{r}=\mathbf{r}(t)$ may be given a new parameter $t=t(s)$ where $\frac{d s}{d t} \neq 0$ at all points in the interval $s_{0} \leq t \leq s_{1}$ and $t_{0}=t\left(s_{0}\right), t_{1}=t\left(s_{1}\right)$. Hence s increases as t increases, $t=t(s)$ is an increasing one-one function, and the direction (orientation) of $\mathbf{r}=\mathbf{r}(t)$ is preserved.

Arc length

Let $\mathbf{r}=\mathbf{r}(t)$ be the piecewise smooth curve C. Let $d s$ be a small increase along the cord of this curve corresponding to small increases $d x, d y$ and $d z$.

We have
$d s=\sqrt{d x^{2}+d y^{2}+d z^{2}}$
and
© blacksacademy.net

$$
\frac{d s}{d t}=\left|\frac{d r}{d t}\right|=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}}
$$

Then the arc length along C from t_{0} (fixed) to t_{1} (variable) is given by

$$
\begin{aligned}
s(t) & =\int_{t_{0}}^{t_{1}} \frac{d s}{d t} \cdot d t \\
& =\int_{t_{0}}^{t_{1}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} \cdot d t
\end{aligned}
$$

Intrinsic equation of a curve

For the curve $\mathbf{r}(t)=(x(t), y(t), z(t))$
write the arc length from a (fixed) to t (variable) as
$s(t)=\int_{a}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u$
This gives s as a function of t, which we can solve to get t as a function of s. So we can reparametrize the curve $\mathbf{r}(t)$ by using s instead of t. This is the unit speed reparametrization of $\mathbf{r}(t)$. Hence, by using arc length as the parameter, we define the intrinsic equation of the curve.
$\beta(s)=\mathbf{r}(t(s))$
Then the unit tangent vector is obtained from this intrinsic equation as
$\hat{\mathbf{T}}=\frac{d \mathbf{r}}{d s}=\left(\frac{d x}{d s}, \frac{d y}{d s}, \frac{d z}{d s}\right)$

Example (13)

Given $\mathbf{r}=(a \cos t, a \sin t, b t) \quad 0 \leq t \leq 2 \pi$
(a) Find the intrinsic equation $\mathbf{r}(s)$ of the curve.
(b) Show that the derivative of $\mathbf{r}(s)$ is unitary.

Solution
(a) $\mathbf{r}=(a \cos t, a \sin t, b t)$

$$
\frac{d x}{d t}=-a \sin t \quad \frac{d y}{d t}=a \cos t \quad \frac{d z}{d t}=b
$$

$$
\begin{aligned}
s(t) & =\int_{t_{0}}^{t_{1}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t \\
& =\int_{t_{0}}^{t_{1}} \sqrt{a^{2} \sin ^{2} t+a^{2} \cos ^{2} t+b^{2}} d t \\
& =\int_{t_{0}}^{t_{1}} \sqrt{a^{2}+b^{2}} d t \\
& =\left.\left(\sqrt{a^{2}+b^{2}}\right) t\right|_{t_{0}} ^{t_{1}} \\
& =\left(\sqrt{a^{2}+b^{2}}\right) t \quad \text { where } t_{0}=0 \text { and } t_{1}=t
\end{aligned}
$$

Hence

$$
t=\frac{1}{\sqrt{a^{2}+b^{2}}} s
$$

Therefore, the intrinsic equation of the curve is

$$
\begin{aligned}
\mathbf{r}(s) & =(a \cos t(s), a \sin t(s), b t(s)) \\
& =\left(a \cos \left(\frac{s}{\sqrt{a^{2}+b^{2}}}\right), a \sin \frac{s}{\sqrt{a^{2}+b^{2}}}, \frac{b s}{\sqrt{a^{2}+b^{2}}}\right) \\
(b) \quad \mathbf{r}(s) & =\left(a \cos \left(\frac{s}{\sqrt{a^{2}+b^{2}}}\right), a \sin \frac{s}{\sqrt{a^{2}+b^{2}}}, \frac{b s}{\sqrt{a^{2}+b^{2}}}\right) \\
\mathbf{T} & =\frac{d}{d s} \mathbf{r}(s)=\left(-\frac{a \sin s}{\sqrt{a^{2}+b^{2}}}, \frac{a \cos s}{\sqrt{a^{2}+b^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}}}\right) \\
|\mathbf{T}| & =\frac{1}{\sqrt{a^{2}+b^{2}}} \sqrt{a^{2} \sin ^{2} s+a^{2} \cos ^{2} s+b^{2}}=1
\end{aligned}
$$

Example (14)

For the curve $\alpha(t)=\left(t, \frac{t^{2}}{\sqrt{2}}, \frac{t^{3}}{3}\right)$
(a) Find the velocity, speed and acceleration for arbitrary t and at $t=1$.
(b) Find the arc-length function $s=s(t)$ based at $t=0$ and determine the arc length of α from $t=-1$ to $t=1$.

Solution
$\alpha(t)=\left(t, \frac{t^{2}}{\sqrt{2}}, \frac{t^{3}}{3}\right)$
© blacksacademy.net
$\alpha^{\prime}(t)=\left(1, \sqrt{2} t, t^{2}\right)$
$v(t)=\left\|\alpha^{\prime}(t)\right\|=\sqrt{(1)^{2}+(\sqrt{2} t)^{2}+\left(t^{2}\right)^{2}}=\sqrt{1+2 t^{2}+t^{4}}=1+t^{2}$
$a(t)=\alpha^{\prime \prime}(t)=(0, \sqrt{2}, 2 t)$
$v(1)=\alpha^{\prime}(1)=(1, \sqrt{2}, 1)$
speed $=|v(1)|=\left|\alpha^{\prime}(1)\right|=2$
$\alpha^{\prime \prime}(1)=(0, \sqrt{2}, 2)$
$s(t)=\int_{0}^{t}\left|\alpha^{\prime}(u)\right| d u=\int_{0}^{t} 1+u^{2} d u=\left[u+\frac{u^{3}}{3}\right]_{0}^{t}=t+\frac{t^{3}}{3}$
Arc length from $t=-1$ to $t=1$
$l=\left[u+\frac{u^{3}}{3}\right]_{-1}^{1}=\left(1+\frac{1}{3}\right)-\left(-1-\frac{1}{3}\right)=2 \frac{2}{3}$

Example (15)

Sketch the curve $\alpha(t)=(t \cos t, t \sin t, t)$. Find the velocity, speed and acceleration of $\alpha(t)$.

Solution
$\beta(t)=(t \cos t, t \sin t, 0)$ describes a circle in the $x y$-plane. A particle moving along this locus would be speeding up owing to the factor t and the circle would be steadily widening. In
$\alpha(t)=(t \cos t, t \sin t, t)$
the particle is also rising parallel to the z-axis at a uniform rate. Hence $\alpha(t)=(t \cos t, t \sin t, t)$
describes a helix in Enclidean \mathbb{E}^{3} space.

© blacksacademy.net

$$
\begin{aligned}
& \begin{array}{l}
\alpha(t)=(t \cos t, t \sin t, t) \\
\text { velocity }=\alpha^{\prime}(t)=(\cos t-t \sin t, \sin t+t \cos t, 1) \text { at } \alpha(t) \\
\text { speed }=\left|\alpha^{\prime}(t)\right|=\sqrt{(\cos t-t \sin t)^{2}+(\sin t+t \cos t)^{2}+1} \\
\\
=\sqrt{\cos ^{2} t-2 t \cos t \sin t+t^{2} \sin ^{2} t+\sin ^{2} t+2 t \sin t \cos t+t^{2} \cos ^{2} t+1} \\
= \\
=\sqrt{2+t^{2}}
\end{array}
\end{aligned}
$$

acceleration $=\alpha^{\prime \prime}(t)=(-2 \sin t-t \cos t, 2 \cos t-t \sin t, 0)$ at $\alpha(t)$

Example (16)

Show that the curve $\mathbf{r}(t)=(\cosh t, \sinh t, t)$ has arc-length function
$s(t)=\sqrt{2} \sinh t$ and find a unit-speed reparametrization of \mathbf{r}.
$\mathbf{r}(t)=(\cosh t, \sinh t, t)$
$\frac{d}{d t} \mathbf{r}(t)=(\sinh t, \cosh t, 1)$
speed $=\left|\frac{d}{d t} \mathbf{r}(t)\right|=\sqrt{\sinh ^{2} t+\cosh ^{2} t+1}=\sqrt{\sinh ^{2} t+\cosh ^{2} t+\cosh ^{2} t-\sinh ^{2} t}=\sqrt{2} \cosh t$
$s(t)=\int_{0}^{t} \sqrt{2} \cosh u d u=[\sqrt{2} \sinh u]_{0}^{t}=\sqrt{2} \sinh t$
Then
$s=\sqrt{2} \sinh t \quad \Rightarrow \quad t=\sinh ^{-1}\left(\frac{s}{\sqrt{2}}\right)$
A unit speed reparametrization of \mathbf{r} is given by

$$
\begin{aligned}
\beta(s) & =\mathbf{r}(t(s)) \\
& =\left(\cosh \left(\sinh ^{-1}\left(\frac{s}{\sqrt{2}}\right)\right), \sinh \left(\sinh ^{-1}\left(\frac{s}{\sqrt{2}}\right)\right), \sinh ^{-1}\left(\frac{s}{\sqrt{2}}\right)\right) \\
& =\left(\sqrt{1+\frac{s^{2}}{2}}, \frac{s}{\sqrt{2}}, \sinh ^{-1}\left(\frac{s}{\sqrt{2}}\right)\right)
\end{aligned}
$$

This follows since $\cosh ^{2} x=1+\sinh ^{2} x$; hence
$\cosh ^{2}\left(\sinh ^{-1}\left(\frac{s}{\sqrt{2}}\right)\right)=1+\sinh ^{2}\left(\sinh ^{-1}\left(\frac{s}{\sqrt{2}}\right)\right)=1+\frac{s^{2}}{2}$

Example (17)

Let \mathbf{u}_{1} and \mathbf{u}_{2} be unit speed reparametrizations of the same curve $\mathbf{r}(t)$. Show that there is a number l such that $\mathbf{u}_{2}(s)=\mathbf{u}_{1}(s+l)$ for all s. Interpret the geometric significance of l.
Solution
© blacksacademy.net

Let
$\mathbf{u}_{1}(s)=\mathbf{r}(t(s))$
$\mathbf{u}_{2}\left(s^{*}\right)=\mathbf{r}\left(t\left(s^{*}\right)\right)$
be two unit speed parametrizations of $\mathbf{r}(t)$. Then
$s=\int_{t_{1}}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u$
$s^{*}=\int_{t_{2}}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u$
Let $l=s^{*}-s=\int_{t_{2}}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u-\int_{t_{1}}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u=\int_{t_{1}}^{t_{2}}\left|\mathbf{r}^{\prime}(u)\right| d u=$ arclength from t_{1} to t_{2}
Solving $l=s^{*}-s$ for s^{*}
$s^{*}=s+l=s+$ arclength from t_{1} to t_{2}
Hence
$\mathbf{u}_{2}\left(s^{*}\right)=\mathbf{u}_{1}(s+l)$

