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Damped Harmonic Motion  
 
 

 

 

 
Prerequisites 
 

You should already be familiar with the solution to homogeneous, constant coefficient second 

order differential equations, with simple harmonic motion and with sinusoidal functions. 

 

 

 

Damped vibrations and linear resistive forces 
 
Damped vibrations occur when the amplitude of an oscillating system progressively decreases. 

 

time

displacement

 

 

To study damped vibrations we must begin by reviewing undamped vibrations. Undamped 

oscillations occurs when an object oscillates under simple harmonic motion.   

 

Simple harmonic motion 

Simple harmonic motion is defined as motion taking place along a straight-line in which the 

acceleration 
 
 
 

2

2

d x

dt
 of the object is proportional to the displacement  x  of the object from a 

fixed point and in the opposite direction to the displacement.  The differential equation governing 

simple harmonic motion is  
2

2
2

d x
x

dt
 with solution  sinx A t . 
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The graph of  sinx A t  is a simple sine wave with constant amplitude.  Hence, the oscillations 

remain constant. 

 

y A t= sin ( )

x t( )

t / s
0

A

–A

2


 

 

Damped oscillations occur when an equation takes the form 

  
2

2
0  

d x dx
a b cx

dt dt
 

where ,  and  are positive constants.a b c   Comparing this to the case for undamped simple 

harmonic motion  
2

2
2

0
d x

x
dt

 we see that a term for the velocity of the particle, 
dx

dt
, has 

appeared in the equation.  Expressions like 
dx

dt
 arise in situations where a particle is subject to 

linear resistive forces.  It is these linear resistive forces that lead to the damping of the oscillation.  

A linear resistive force is a force acting on a particle whose magnitude is proportional to the 

speed at which the object is moving and whose direction opposes the velocity of the object.  For 

example, suppose an object is suspended by a spring and is immersed in a bucket of a viscous 

liquid.  It is displaced from its equilibrium position and starts to oscillate.  However, the liquid 

progressively slows down the mass, so the amplitude of the oscillations progressively decreases.  

Consequently, the mass undergoes damped oscillation. 

 

spring

mass

liquid
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The motion of a mass oscillating in air will also be opposed by air resistance and so will undergo 

damped oscillations.  (The point of the liquid in this example is to make the effect of damping 

more obvious.)  We shall now show how a system of this kind can lead to a differential equation of 

the form 

  
2

2
0  

d x dx
a b cx

dt dt
 

 

Let the mass of the particle be m, let the stiffness of the spring be k, let the natural length of the 

spring be 0l  and let the magnitude of the resistive force of the treacle be 
dx

R r
dt

 where r is a 

constant and    dx
v t

dt
 is the velocity of the mass.  The resistive force is understood to oppose 

the motion of the particle.  We will suppose the spring is displaced by  x x t  from its 

equilibrium position.  However, as usual, we start to study such systems, by considering what 

happens at the equilibrium position first.  When the mass hangs under its own weight in the 

equilibrium position the forces may be drawn as follows. 

 

W

T

l 0

d

 

 

The mass is subject to two forces, the tension in the spring pulling it upwards and the weight 

pulling it downwards.  The tension is given by kd where d is the extension of the spring up to the 

equilibrium point.  The mass is given by W mg .  Since the system is in equilibrium 





T W

kd mg
 

Now suppose that the mass is displaced from the equilibrium position by a further  x x t .  It is 

then subject to three forces. The tension  T  due to the extension of the spring.  Its weight 
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 W mg  and the linear resistive force 
  
 

dx
R r

dt
 arising from the opposition to motion of the 

fluid or air. 

 

W

T

l 0

d x+ 

R

F

 

 

In the diagram above we imagine that the mass is about to move upwards.  As the linear resistive 

force 
  
 

dx
R r

dt
 opposes the motion, we show it pointing downwards.  The total extension is 

d x  and the tension is 

   T k d x  

The negative sign indicates that the tension is in the opposite direction to the displacement.  The 

weight is, as usual 

W mg  

The linear resistive force is  

 
dx

R r
dt

 

It acts as to oppose the motion, which is shown by the negative sign.  The resultant force acting 

on the particle is 

  F T R W  

and by Newton’s second law this is 

 
2

2

d x
F ma m

dt
 

Hence  

     

    

2

2

d x dx
m k d x r mg

dt dt
dx

kd kx r mg
dt
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Since kd mg  we have  

  

  

2

2

2

2
0

d x dx
m r kx

dt dt

d x dx
m r kx

dt dt

 

which is a second order homogeneous constant coefficient differential equation. 

 

Second order homogeneous constant coefficient differential equations 

Given   
2

2
0

d x dx
a b cx

dt dt
 where a, b and c are constants, the auxiliary equation is 

  2 0am bm c  with roots 1 2 and m m  and discriminant   2 4b ac . If   0  the roots 

1 2 and m m  are real and distinct, the solution to the original differential equation takes the form 

   1 2m t m tx t Ae Be  where A and B are constants. If   0  then 1 2m m  and the root is real and 

repeated, the solution to the original differential equation takes the form      1m tx t A Bt e  where 

A and B are constants. If   0  the roots 1 2 and m m are conjugate complex numbers where 

      1 2 and m i m i , the solution to the original differential equation takes the form 

      sin costx t e A t B t  where A and B are constants. 

 

Dashpots 

The purpose of a car suspension system is to bring about the damping of oscillations in a tyre as 

it runs over a bump.  We will be initially considering the case where the tyre runs over a single 

bump, which effectively gives it a sudden sharp displacement from its equilibrium position.  In 

order to bring about the damping the suspension system is fitted with a mechanical device called 

a dashpot.  The dashpot is represented thus 

 

 

 

Its function is to provide a linear resistive force  
dx

R r
dt

 where r is the dashpot constant.  The 

whole car suspension system can be represented by the following. 
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CHASIS

SPRING

DASHPOT

TYRE

r

k, l 0

 

 

In this application the oscillating mass is provided by the chassis, and we are imagining that the 

tyre, dashpot and spring have no mass.  This creates complications in the mathematics that we 

wish to avoid at this stage, so we will continue to deal with the solution to questions where the 

oscillating mass is given by the object here labelled the tyre, and the object labelled by the chassis 

is fixed.  The symmetry of the situation means that what applies to a tyre of mass m where the 

chassis is fixed and has no mass would also apply to a chassis of mass m where the tyre is fixed 

and has no mass. 

 

In other mechanical systems where there is a linear resistive force, this force may also be 

represented by dashpot symbol. 

 

Example (1) 

A mass, m of 2 kg, is suspended by a spring of natural length 0 2ml  and stiffness  5k  

and by a dashpot with dashpot constant  2r .  It is subject to a sudden sharp 

displacement of 0.5 m.  Find its equation of motion and its phase lag.  Sketch a graph 

showing the subsequent motion.  Find its maximum amplitude subsequent to the 

displacement, its angular frequency, frequency and period. 

 

Solution 

The system can be represented as follows. 
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r

k, l
0

 

 

Let  x x t  represent its displacement at time t after it receives the shock, so   0 0.5x .  

The general equation of motion for this system is 

  
2

2
0

d x dx
m r kx

dt dt
 

Here   2,  2,  5m r k .  Hence 

  
2

2
2 2 5 0

d x dx
x

dt dt
 

We now proceed to solve this equation.  The auxiliary equation is 

  22 2 5 0 m m  

  


  


 


  

5 25 34

2

1 9

2
1 3

2
0.5 1.5

m

i

i

 

The solution is complex which indicates that there are oscillations.  The general solution 

is 

       0.5 sin 1.5 cos 1.5tx t e A t B t  

We need to determine the constants A and B.  We have initial conditions   0 0.5x  and 

also     0 0 0
dx

v
dt

 since it is not moving at  0t .  Then   0 0.5x  implies  0.5B .    

Differentiating  x t  gives 

                 0.5 0.50.5 sin 1.5 cos 1.5 1.5 cos 1.5 1.5 sin 1.5t tdx
v t e A t B t e A t B t

dt
 

Substituting    0 0, 0v t  
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  0 0.5 1.5B A  

Since  0.5B  

  

 

0 0.25 1.5

0.25 1

1.5 6

A

A
 

Therefore, the equation of motion is 

         
 

0.5 1 1
sin 1.5 cos 1.5

6 2
tx t e t t  

The presence of both a sine and cosine element in the part determining the oscillations 

indicates that there is a phase lag.  Let 

     

        





 

 

  

  

  

1 1
sin 1.5 cos 1.5 cos 1.5

6 2
where  is the phase lag.  Then  

1 1
sin 1.5 cos 1.5 cos 1.5 cos sin 1.5 sin

6 2
1 1

cos sin
2 6

t t R t

t t R t t

R R

 

 

R cos= 0.5

R sin–
R

= –0.322 rad

1
6

 

 

 

 

 

    
      

  
    

         
   

1

2 2

1
16

tan ... 0.322 rad  3 s.f.
1 3
2

1 1
0.52704... 0.527 3 s.f.

6 2
R

  

So the equation of motion can also be written 

     0.5 0.527cos 1.5 0.322tx t e t  

The phase lag is given by 

 
 



1.5 0.32175... 0

0.215 s 3 s.f.

t

t
 

So the phase lag of 0.322 rad corresponds to a time of 0.215 s.   

The angular velocity of the damped oscillation is   11.5 rad s .  The frequency is 
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 
 

  
1.5

0.239 Hz 3 s.f.
2 2

f  

The period is  

  


  
2 2

4.19 s  3 s.f.
1.5

T  

In every half cycle the velocity is zero and the amplitude is at a maximum.  At  0t  the 

amplitude is 0.5 m due to the initial displacement.  At 


  s
2 1.5

T
 the velocity will again be 

zero, at which point the displacement will be 

       



   
        

 

0.5
1.5 1 1

sin 0 cos 0.175 m 3 s.f.
6 2

x t e  

A sketch of the graph of      0.5 0.527cos 1.5 0.322tx t e t  is as follows. 

 

 

t

x t e( ) = 
–0.5t

x t e( ) = – –0.5t

x

0.5

1.5
Period = 

Phase shift = 0.215 s  0.322 rad 

x t t( ) = 0.527cos (1.5  - 0.322)

–0.5t

2

x t e       t( ) = 0.527 cos (1.5  - 0.322)

 

 

Regarding this sketch note that because of the damping factor the maxima of 

     0.5 0.527cos 1.5 0.322tx t e t  occur   0.322 rad 0.215 s  before the maxima of 

the corresponding undamped function     0.527cos 1.5 0.322x t t .  The graph of the 

damping function    0.5tx t e  is not in fact tangent to      0.5 0.527cos 1.5 0.322tx t e t . 
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Critical and non-critical damping 
 

We have seen that the general equation of motion for a system subject to linear resistive force and 

consequently subject to damping is 

     
2

2
0 mass, constant of linear resistance, spring constant

d x dx
m r kx m r k

dt dt
 

The theory of homogenous second order constant coefficient differential equations tells us that 

this has solutions depending on the nature of the roots to the auxiliary equation 

  2 0mx rx k  

Suppose  1 2,  are the two roots of this equation.  Then, there are three cases: 

(1)  1 2,  are real and distinct   1 2  then     1 2t tx t Ae Be  

In the case where there is a linear resistive force the roots 1  and 2  will both be negative.  

This indicates a situation where there is overdamping.  The system does not oscillate but 

experiences an immediate exponential decrement returning it to the equilibrium position. 

 

t

x t Ae     Be( ) = + –    t

x

1 –    t2

0
 

 

(2) If  1 2  is a real repeated root, the solution takes the form       1x t A Bt e .  The 

system does not travel beyond the equilibrium position, and is brought back to the 

equilibrium position.  The motion is not oscillatory. 

 

t

x t A Bt e    ( ) = (  + ) –    t

x

1

0
 

(3) If  1 2,  are complex conjugate numbers so that 
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  
  

 

 
1

2

i

i
 

then the solution is 

      sin costx t e A t B t  

 

Again the requirement that the linear resistive force acts in the opposite direction to the velocity 

entails that   is a negative quantity.  Hence, the system oscillates but the amplitude of the 

oscillations is damped. 

 

t

x t e( ) = –t

x t e( ) = – –t

x

Phase shift

 

 

As the graph indicates, generally we expect a phase lag. 

 

The criterion for critical damping 

For oscillations to take place there must be complex roots.  Examining the equation 

     
2

2
0 mass, constant of linear resistance, spring constant

d x dx
m r kx m r k

dt dt
 

with the auxiliary equation 

  2 0mx rx k  

We require that the discriminant 

   





2

2

2

4 0

4

1
4

r mk

mk r

r

mk

 

Let us define 

  
2

4 2

r r

mk mk
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to be the damping factor.  The requirement for oscillations to take place is, therefore, 

  1   

When   1  we have the case of the single repeated root 

  
2

r

m
 

with solution       tx t A Bt e .  This situation, where   1 , is called critical damping.  It returns 

the system to the equilibrium position at the fastest possible rate without overshooting the 

equilibrium position.  When such things as gun recoil mechanisms are designed, it is this that is 

selected. 

 

t






x

 

 

Amplitude of successive oscillations 

Consider the case where the damping factor   1  so there are damped oscillations. 

 

t

x t e( ) = 
–t

x t e( ) = – –t

x

A1

A1

A2

A2




 

 

The diagram marks the successive amplitudes of the oscillations.  The general solution is 

      cosatx t e A t  
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where          1 2 and i i  are the two complex conjugate solutions to the equation 

  2 0mx rx k  

Hence  

   


2

1,2

4

2

r r mk

m
 

and 

   
 

2 4
 and 

2 2

r r mk

m m
 

The angular frequency is given by   so the period is 




2

T .  Successive peaks occur when 

     cos 1   i.e. when 0bt bt .  This occurs after every complete oscillation – that is, after 

intervals of the period T.   Let 1A  represent the first peak, then at 

 1
1

tA Ae  

where 1t  is the first value such that 

  0bt  

Then the second peak occurs at 

 1t t T  

and the nth at  1t t nT .   Hence 

       
 1 11

1and 
t n T t nT

n nA Ae A Ae  

Hence the ratio 

  

 

    





 

 




   









1

1

1 1

1

1

1

t n T

n
t nT

n

t n T t nT

T

A Ae

A Ae

e

e

 

So successive peaks maintain a constant ratio.  That is, the amplitude of successive oscillations 

decreases with time in geometric progression with common ratio Te . 

 


