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De Moivre’s Theorem 
 
 
 
 

Prerequisites 
 
You should be familiar with the various ways of representing a complex number in Cartesian 

form, in polar (trigonometric) form and in exponential form.   
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The first three here are three forms of the polar representation of z; the next two are Cartesian 

forms, the last two are exponent forms.  To understand this chapter you also require knowledge 

of mathematical induction. 

 

 

De Moivre’s theorem 
 
De Moivre’s theorem is a result that enables us to find powers and roots of complex numbers.  It 

tells us how to evaluate powers of a complex number – that is, how to find zn.  It can be expressed 

in Cartesian and polar (trigonometric) form. 

 

De Moivre’s theorem – Cartesian form 

       (cos sin ) cos sinn n nz r i r n i n  

 

De Moivre’s theorem – Polar form 

  [ , ] [ , ]n n nz r r n  

 

Example (1) 

Express  
2

2cos 2 sin
8 8

i
   

 
 in the form x iy . 
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Solution 
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2cos 2 sin 2, Putting  in polar form
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2 ,2 Applying De Moivre's theorem
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Proof of De Moivre’s Theorem 
 

The proof of De Moivre’s theorem follows by mathematical induction and exploits the property of 

multiplication of complex numbers.  In polar form this is 

    1 1 2 2 1 2 1 2[ , ][ , ] [ , ]r r r r  

The proof in polar form is particularly straightforward and elegant. 

 

Proof of De Moivre’s Theorem 

To prove 

  [ , ] [ , ]n n nz r r n  

 

Proof by mathematical induction. 

For the particular step, when     1 11    [ , ] [ ,1 ]n r r  

For the induction step the induction hypothesis is 

For n = k  [ , ] [ , ]k kr r k  

 [ , ] [ , ]k kr r k  

To prove for n = k + 1     1 1[ , ] [ , 1 ]k kr r k .  Now 
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Hence the induction step holds and the result is true for all n. Converting into Cartesian form 

gives:        (cos sin ) cos sinn n nz r i r n i n  
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Interpretation of De Moivre’s Theorem and the n roots of unity 
 

Suppose that  [ , ]z r .  For a definite illustration let us consider 3 3[ ,3 ]z r . Then graphically we 

plot 3z  by noting (1) that the argument of 3z  is 3 times the argument of z; (2) that the modulus of 

3z  is the cube of the modulus of z. 
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If r  > 1  then the values of 2 3 4, , ,...z z z  “spiral outwards”. 
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If r  < 1 then the values 2 3 4, , ,...z z z ”spiral inwards”.  Whilst if r = 1 then the values of 2 3 4, , ,...z z z  

all lie on the unit circle. 
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The previous illustration suggests that we can apply De Moivre’s theorem in reverse to find 

solutions to the equation  1nz .  This is indeed the case.  We observe that the equation 2 1x  has 

two solutions, x  = i and x  = i.  Likewise, we expect the equation 

 1nz  

to have n solutions, and this is the case.  In polar form the equation  1nz  takes the form 

 [ , ] [1,0]nr  

Applying De Moivre’s theorem we get 

 [ , ] [1,0]nr n  

Hence   1 and 1 and 0nr n n .  One solution to the equation 0n   is   = 0.  However, we 

should recall that the angle 0 is given modulo 2  and that 

        0 2 4 ... 2 ...   mod2n  

Hence the n roots of unity – that is the n roots to the equation  1nz  are given by the n distinct 

solutions to the equation  0 mod2n   

   
2 4 6

0, , , ,....
n n n

 

The solutions in polar form are the n distinct complex numbers 

      
             

2
1,0 , 1, , 1, , 1, , ...

4 6
n n n

 

 

Example (2) 

Solve 3 1z  

 

Solution 

 By substitution of  3n  into the formula 

      
             

2
1,0 , 1, , 1, , 1, , ...

4 6
n n n

 

the solutions are 

   
         

2
1,0 , 1, , 1,

3 3

4
 

Graphically, these solutions are represented as follows. 
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In Cartesian form 
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We can also use De Moivre’s theorem to find solutions to equations such as  4 1z .  

 

Example (3) 

Solve  4 1z . 

 

 Solution 
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In Cartesian form 
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Applications of De Moivre’s theorem to trigonometric identities 
 

By expanding   cos sin
n

i  using the Binomial theorem (or Pascal’s triangle) and equating with 

 cos sinn i n  we can obtain further trigonometric identities.  Recall that De Moivre’s theorem is 

      cos sin cos sin
n

i n i n  

Since the real and imaginary parts of both sides of this equation are independent of each other, 

we can equate real and imaginary parts to obtain trigonometric identities. The whole process is 

best grasped through illustration. 

 

Example (4) 

Prove       5 3cos5 16cos 20cos 5cos . 

 

 Solution 

 By De Moivre’s theorem 

      
5

cos sin cos5 sin5i i  

Pascal’s triangle up to n = 5 gives 
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1
1 1

1 1
1 1

1 1

2
33

4 46
1 15 1010 5  

 

Hence 

      

    

   

  

5 4 2 3 2

3 2 3 4 4 5 5

cos5 sin5 cos 5 cos sin 10 cos sin

10 cos sin 5 cos sin sin

i i i

i i i
 

Since  2 1i we have 

      

    

   

  

5 4 3 2

2 3 4 5

cos5 sin5 cos 5 cos sin 10cos sin
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i i
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On equating real parts and using the identity   2 2cos sin 1  we get 
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5 3 3 5
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cos5 cos 10cos sin 5cos sin

cos 10cos (1 cos ) 5cos (1 cos )

cos 10cos 10cos 5cos (1 2cos cos )

11cos 10cos 5cos 10cos 5cos

16cos 20cos 5cos

 

By equating imaginary parts we can also show 
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sin5 5cos sin 10cos sin sin

5(1 sin ) sin 10(1 sin )sin sin

5(1 2sin sin )sin 10sin 10sin sin

5sin 10sin 5sin 10sin 10sin sin
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