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Derivatives of Exponential and 
Logarithmic Functions 

 
 

 
Derivatives of Exponential and Logarithmic Functions 
 
Derivative of the exponential function 

The exponential function y = ex has the unique property that its derivative is identical to 

     If    then   x x x xd
e e f x e f x e

dx
 

Other related derivatives are 
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Derivative of the logarithmic function 

The derivative of logarithm to the base e (ln x) is 

     
1 1

ln If ln   then  
d

x f x x f x
dx x x

 

Also,       
1
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       
1 1 cos 1

( ) log sin cos cot
2sin 2sin 2 sin

x
c x x x

xx x
 

 

 

Sketching the curves of exponential functions 
Sketching the curves of exponential functions follows the usual rules for the transformation of 

graphs. 

 

 Example 

Sketch the curve   21 xy e  

Solution 

We start with the function  xy e  and scale it vertically by a factor of 2 to obtain the 

function  2xy e .  We reflect this in the vertical axis to obtain  2xy e .  We reflect this in 

the horizontal axis to obtain   2xy e .  Finally, we translate this vertically by +1 to obtain 

  21 xy e . 
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The Number e 

The number e may be defined as the real number such that x xd
e e

dx
.  However, there is another, 

arguably more fundamental, approach to the definition of e, that derives from its role in the 

calculation of compound interest. 

 

Compound interest concerns the question of repeatedly calculating interest by charging a rate 

added back to the principle invested. 

 

 Example 

 Find £250 invested for 3 years at 8% per annum. 

 Solution 

 Let us do this first by the “slow method”. 

 8% of 250 =  250 0.08 20 . 

 Value after 1st year = 250 + 20 = £270. 

 This is equivalent to  250 1.08 270 . 

 Repeating this process:  

After the 2nd year:  270 1.08 291.60  

After the 3rd year:  291.6 1.08 314.928  

Hence after 3rd years the sum is £314.93 to the nearest penny. 

This can all be done in one step: 

  
3

291.6 1.08 314.928  

 

Hence, we calculate the process in three discrete stages.  However, we wish to extend this kind of 

operation to a continuous process.  That is, the idea of continuously charging compound interest. 

 

Fundamentally, this is the same problem as finding, for a given rate of interest, the value of a 

principle taken over a single time period – for example, 100% compound interest charged 

continuously for 1 year.    We argue as follows: 

 

100% compound interest over one year.   

This is equivalent to doubling the value of the principle, so at the end of the period, the 

value is: 
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  0 1 1P P , where 0P  is the original sum invested.  In the following, let 0 1P . 

 

50% compound interest charged twice over a given year:  

       
 

2

0

1 1 9
1 1 1

2 4 4
P P . 

 

33.33...% compound interest charged three times over a given year: 

        
 

3

0

1 1 1 64
1 1 1

3 3 27 27
P P . 

 

If we continue this process, we reach the idea of 
100

%
n

 interest charged n times over a single time 

period (here one year). 
   
 

0

1
1

n

P P
n

.  The Binomial theorem for rational index is: 

    
     

2 3( 1) ( 1)( 2)
1 1 ....

2! 3!

n n n x n n n x
x nx   

 

Hence: 

                   
 

       

         

2 3

2

2

1 1
( 1) ( 1)( 2)

1 1
1 1 ....

2! 3!

1 1 1 1 2
1 1 ...

2! 2! 3! 3! 3!
1 1 1 1 2

1 1 ... ...
2! 3! 2! 3! 3!

n n n n n n
n n

n
n n

n n n

n n n

 

The idea of charging interest continuously is equivalent to letter  n  in this expression.  Then 

all the terms with n in the denominator tend to zero (we say “vanish”), and we obtain for 100% 

interest charged continuously over one time period: 



         
 

1 1 1
lim 1 1 1 ... 2.71828....

2! 3!

n

n
e

n
. 

This is the definition of the number e. 

 

We can extend these ideas to the notion of charge a rate r, not necessarily equivalent to 100% 

interest, on n occasions in each time period for t time periods.  Let 0P  be the principle, r the rate, 

and t the number of time periods to calculate.  Then after t periods the value is: 
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   
 

0 1
nt

r
P P

n
. 

Making this into a continuous variable in n gives: 



   
 

0 lim 1
nt

n

r
P P

n
. 

To show the connection with the number e, let us make the substitution 
 

 
1 n

x
r r

n

.  This also 

gives n xr .  Then, 

 

                 
0 0 0

0 0

1 1
lim 1 lim 1

rtxrt x

rt

n n
P P P P e

x x
. 

So we see that e is fundamental to all calculations involving continuous compound interest.  Since 

in applications in physics the idea of a continuously varying physical quantity, for example, the 

decrease in temperature of a standing bowl of initially hot water, crops up in every context, we see 

that the number e is fundamental not only to business, but also to our modelling of the real 

world. 

 

Proofs of the derivatives of lnx and ex 

So we define e to be: 


         
 

1 1 1
lim 1 1 1 ... 2.71828....

2! 3!

n

n
e

n
.  Given the exponential 

function:    xf x e  and its inverse, the natural logarithm,   1 lnf x x , we now seek to prove the 

two fundamental properties of their calculus.  Namely: 

 
1

lnx xd d
e e x

dx dx x
 

To do this, we start with the formula for the natural logarithm. 

 

 Theorem 

 
1

ln
d

x
dx x

 

 Proof 

 From the definition of the derivative: 
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 




  





 

 



  

     
  
  

                        
          

0

1

0 0 0

ln ln
ln lim

ln
1

lim lim ln 1 lim ln 1

x

x

x x x

x x xd
x

dx x

x x
x xx

x x x x

 

 Substitute 
 


    

1 1x
u xu x

x x xu
; also    0 0x u .  Then: 

  

       
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 
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   
 
                        
        

1

0

1

0

1
1 1 1

0 0 0 0

ln lim ln 1

lim ln 1

1 1 1 1
lim ln 1 lim ln 1 lim ln 1 lim ln

x

x

xu
x

x
u u u

x x x x

d x
x

dx x

u

u u u e
x x x x

 

 

Given this result, we may now proof the result for the exponential function. 

 

 Theorem 

 x xd
e e

dx
 

 Proof 

    ln ln 1xd d d
e x e x

dx dx dx
 

However, by the chain rule: 

   
1

ln x x
x

d d
e e

dx e dx
. 

Equating both:  
1

1x
x

d
e

e dx
.  Hence: 

x xd
e e

dx
. 

 


