The derivatives of the hyperbolic functions

The derivatives of the principle hyperbolic functions

$\sinh x$
$\frac{d}{d x} \sinh x=\cosh x$
Proof

$$
\begin{aligned}
\frac{d}{d x}(\sinh x) & =\frac{d}{d x} \frac{1}{2}\left(e^{x}-e^{-x}\right) \\
& =\frac{1}{2}\left\{e^{x}+e^{-x}\right\} \\
& =\cosh x
\end{aligned}
$$

$\cosh x$
$\frac{d}{d x} \cosh x=\sinh x$
Proof

$$
\begin{aligned}
\frac{d}{d x} \cosh x & =\frac{d}{d x}\left(\frac{1}{2}\left(e^{x}+e^{-x}\right)\right) \\
& =\frac{1}{2}\left(e^{x}-e^{-x}\right) \\
& =\sinh x
\end{aligned}
$$

$\tanh \boldsymbol{x}$
$\frac{d}{d x} \tanh x=\operatorname{sech}^{2} x$
Proof

$$
\begin{aligned}
\frac{d}{d x} \tanh x & =\frac{d}{d x}\left(\frac{\sinh x}{\cosh x}\right) & & \\
& =\frac{\cosh ^{2} x-\sinh ^{2} x}{\cosh ^{2} x} & & {[\text { By the Quotient Rule }] } \\
& =\frac{1}{\cosh ^{2} x} & & {\left[\text { Since } \cosh ^{2} x-\sinh ^{2} x=1\right] } \\
& =\operatorname{sech}^{2} x & &
\end{aligned}
$$

$\operatorname{coth} x$
$\frac{d}{d x} \operatorname{coth} x=-\operatorname{cosech}^{2} x$
The proof is similar to that for $\tanh x$
$\operatorname{sech} x$
$\frac{d}{d x} \operatorname{sech} x=-\tanh x \operatorname{sech} x$
Proof

$$
\begin{aligned}
\frac{d}{d x} \operatorname{sech} x & =\frac{d}{d x} \frac{1}{\cosh x} \\
& =\frac{d}{d x}(\cosh x)^{-1} \\
& =-(\cosh x)^{-2} \sinh x \\
& =-\frac{\sinh x}{\cosh x \cosh x} \\
& =-\tanh x \operatorname{sech} x
\end{aligned}
$$

$\operatorname{cosech} x$
$\frac{d}{d x} \operatorname{cosech} x=-\operatorname{coth} x \operatorname{cosech} x$

Problems involving derivatives of hyperbolic functions

The student should be able to apply his knowledge of differentiation and the definitions of hyperbolic functions together

Example (1)

Prove $\frac{d}{d x} \tan ^{-1}\left(e^{x}\right)=\frac{1}{2} \operatorname{sech} x$
[WJEC June 2003]

$$
\begin{array}{rlr}
\frac{d}{d x} \tan ^{-1}\left(e^{x}\right) & =\frac{1}{1+\left(e^{x}\right)^{2}} \times e^{x} \quad[\text { By the chain rule }] \\
& =\frac{1}{\left(\frac{1+e^{2 x}}{e^{x}}\right)} & \\
& =\frac{1}{e^{-x}+e^{x}} \\
& =\frac{1}{2 \cosh x} \quad[\text { By the defintion of } \cosh x] \\
& =\frac{1}{2} \operatorname{sech} x &
\end{array}
$$

Example (2)

Find the coordinates of the minimum point of the curve $y=3 \cosh (x)-2 \sinh (x)$.

$$
\begin{aligned}
& \frac{d y}{d x}=3 \sinh (x)-2 \cosh (x), \\
& \text { At the minimum point, } \frac{d y}{d x}=0 \text {, so } \\
& 3 \sinh (x)-2 \cosh (x)=0 \\
& 3\left(\frac{e^{x}-e^{-x}}{2}\right)-2\left(\frac{e^{x}+e^{-x}}{2}\right)=0 \\
& 3\left(e^{x}-e^{-x}\right)-2\left(e^{x}+e^{-x}\right)=0 \\
& e^{x}-5 e^{-x}=0 \\
& e^{2 x}-5=0 \\
& e^{2 x}=5 \\
& x=\frac{1}{2} \ln (5) \\
& x=0.8047 \quad(4 \text { d.p. })
\end{aligned}
$$

To check that this is a minimum point of the curve,
$\frac{d^{2} y}{d x^{2}}=3 \cosh (x)-2 \sinh (x)=3 \cosh (0.8047)-2 \sinh (0.8047)=2.2361$ (4d.p.)
$\frac{d^{2} y}{d x^{2}}>0$, so there is a local minimum of the curve at this point.
We know that there are no other stationary points, so this must be the minimum point of the whole curve.

$$
y=\frac{d^{2} y}{d x^{2}}=3 \cosh (0.8047)-2 \sinh (0.8047)=2.2361 \text { (4 d.p.) }
$$

So the coordinates of the minimum point are $(0.8047,2.2361)$, to $4 \mathrm{~d} . \mathrm{p}$.

Integrals of hyperbolic functions

Since integration is the reverse operation of differentiation it is immediate that

$$
\begin{array}{ll}
\int \cosh x d x=\sinh x+c & \int \operatorname{cosech}^{2} x d x=-\operatorname{coth} x+c \\
\int \sinh x d x=\cosh x+c & \int \tanh x \operatorname{sech} x d x=-\operatorname{sech} x+c \\
\int \operatorname{sech}^{2} x d x=\tanh x+c & \int \operatorname{coth} x \operatorname{cosech} x d x=-\operatorname{cosech} x+c
\end{array}
$$

So the student should be able to solve elementary problems involving the integration of hyperbolic functions possibly also involving hyperbolic identities.

Example (3)

Find $\int \sinh ^{2} x d x$

We start with the hyperbolic identity
$\cosh 2 x=1+2 \sinh ^{2} x$
and rearrange it to obtain

$$
\sinh ^{2} x=\frac{1}{2} \cosh 2 x-\frac{1}{2}
$$

Hence

$$
\begin{aligned}
\int \sinh ^{2} x d x & =\int \frac{1}{2} \cosh 2 x-\frac{1}{2} d x \\
& =\frac{1}{4} \sinh 2 x-\frac{1}{2} x+c
\end{aligned}
$$

Example (4)

Use the substitution $x=\sinh u$ to evaluate
$\int_{0}^{2} \sqrt{1+x^{2}} d x$

We have

$$
\begin{array}{lll}
x=\sinh u & \Rightarrow & d x=\cosh u \cdot d u \\
\sinh u=0 & \Rightarrow & u=0 \\
\sinh u=2 & \Rightarrow & u=\sinh ^{-1} u=1.4436 \ldots
\end{array}
$$

Making the substitution

$$
\begin{array}{rlrl}
\int_{0}^{2} \sqrt{1+x^{2}} d x & =\int_{0}^{\sinh ^{-1} 2=1.4436}\left(\sqrt{1+\sinh ^{2} u}\right) \cosh u d u \\
& =\int_{0}^{1.4436} \cosh ^{2} u d u & & {\left[\text { Since } \cosh ^{2} x-\sinh ^{2} x=1\right]} \\
& =\frac{1}{2} \int_{0}^{1.4436} \cosh 2 u+1 d u & & \text { [Since } \left.\cosh 2 x=2 \cosh ^{2} x-1\right] \\
& =\frac{1}{2}\left[\frac{1}{2} \sinh 2 u+u\right]_{0}^{1.4436} & & \\
& =\frac{1}{2}\left(\frac{1}{2} \sinh (2.8872)+1.4436\right)-0 & \\
& =2.96(3 \text { s.f. }) &
\end{array}
$$

