Direct Integration

Prerequisites

You should already understand that integration is the reverse process of differentiation.

$$g(x) = \int f(x) dx \xrightarrow{\text{differentiate}} f(x) = g'(x)$$

You have also already met the following functions and their derivatives

function	derivative
χ^n	nx^{n-1}
e ^x	e ^x
ln x	$\frac{1}{x}$
sin x	COS X
COS X	$-\sin x$

function	derivative
tan x	$\sec^2 x$
cosec x	– cot <i>x</i> cosec <i>x</i>
sec x	tan x sec x
cot x	$-\cos^2 x$

Example (1)

Reverse the table above to fill in the missing entries in the table below

function	integral
x ⁿ	$\frac{x^{n+1}}{n+1} + c n \neq 1$
e ^x	
$\frac{1}{x}$	
sin x	
COS X	

function	integral
sec ² x	
cot <i>x</i> cosec x	
tan x sec x	
cosec ² x	

Solution	
function	integral
χ^n	$\frac{1}{n+1}x^{n+1} + c n \neq 1$
e ^x	$e^{x} + c$
$\frac{1}{x}$	$\ln x + c$
sin x	$\cos x + c$
COS X	$-\sin x + c$

function	integral
sec ² x	$\tan x + c$
cot <i>x</i> cosec <i>x</i>	$-\cos c x + c$
tan x sec x	$\sec x + c$
cosec ² x	$-\cot x + c$

The technique of "direct integration" to find integrals is simply the idea of searching *by trial and error* for a function that reverses the process of differentiation. You should have already learnt to directly integrate simple polynomial functions.

Example (2)

Integrate $x^{\frac{3}{2}} - \frac{6}{x^2}$ with respect to x.

Solution

Let
$$f(x) = x^{\frac{3}{2}} - \frac{6}{x^2}$$

We have to integrate two functions. Let us do this separately and then add the results at the end.

For $f_1(x) = 2x^{\frac{1}{2}}$ Try $x^{\frac{5}{2}} \Rightarrow \frac{d}{dx}x^{\frac{5}{2}} = \frac{5}{2}x^{\frac{3}{2}}$ Try $\frac{2}{5}x^{\frac{3}{2}} \Rightarrow \frac{d}{dx}\left(\frac{2}{5}x^{\frac{3}{2}}\right) = \frac{2}{5} \times \frac{5}{2}x^{\frac{3}{2}} = x^{\frac{3}{2}}$ (\checkmark) For $f_2(x) = 3x^{-3}$ Try $x^{-1} \Rightarrow \frac{d}{dx}x^{-1} = -x^{-2}$

Try
$$6x^{-1} \implies \frac{d}{dx} 6x^{-1} = 6 \times -x^{-2} = 6x^{-2} = \frac{6}{x^2}$$
 (\checkmark)
Thus
 $\int x^{\frac{3}{2}} - \frac{6}{x^2} dx = \frac{2}{5}x^{\frac{3}{2}} + \frac{6}{x} + c$

Finally, you should also have learnt how to differentiate products, chains and quotients by the rules

(1) Product rule

$$(f \times g)' = f' \times g + f \times g'$$
 $\frac{d}{dx}(u \times v) = \frac{du}{dx} \times v + \frac{dv}{dx} \times u$

(2) Chain rule

$$(fg)' = (f'g) \times g'$$
 $\frac{du}{dx} = \frac{du}{dv} \times \frac{dv}{dx}$ where $u(x) = u(v(x))$

(3) Quotient rule

$$\left(\frac{f}{g}\right)' = \frac{f' \times g - f \times g'}{g^2} \qquad \qquad \frac{d\left(\frac{u}{v}\right)}{dx} = \frac{v \times \frac{du}{dx} - u \times \frac{dv}{dx}}{v^2}$$

Example (3)

Differentiate $e^{-2x} \cos 3x$

Solution

$$\frac{d}{dx}e^{-2x}\cos 3x = \left(\frac{d}{dx}e^{-2x}\right)\cos 3x + e^{-2x}\left(\frac{d}{dx}\cos 3x\right)$$
Product rule
$$= -2e^{-2x}\times\cos 3x + e^{-2x}\times-3\sin 3x$$
Chain rule
$$= -2e^{-2x}\cos 3x - 3e^{-2x}\sin 3x$$

Extending direct integration

The same method of direct integration can now be extended to cover a wider range of functions. It is simply a question of working one's way through a series of examples.

Example (4) Find $\int \cos 5x \, dx$

Solution

Try
$$\sin 5x \Rightarrow \frac{d}{dx} \sin 5x = 5\cos 5x$$

Try $\frac{1}{5}\sin 5x \Rightarrow \frac{d}{dx}\frac{1}{5}\sin 5x = \frac{1}{5} \times 5\cos 5x = \cos 5x$ (\checkmark)
Hence
 $\int \cos 5x \, dx = \frac{1}{5}\sin 5x + c$

Henceforth we shall sometimes omit the various trials and show only the result. We can evaluate definite integrals by direct integration.

Example (5)

Evaluate $\int_{1}^{1.5} e^{3x} dx$ giving your answer to 4 significant figures.

Solution

$$\int_{1}^{1.5} e^{3x} dx = \left[\frac{1}{3}e^{3x}\right]_{1}^{1.5} = \frac{1}{3}e^{4.5} - \frac{1}{3}e^{3} = 23.3105... = 23.31 (4 \text{ s.f.})$$

The limits in exact integrals involving trigonometric functions are usually given in radians.

Example (6)

Evaluate $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sin(-2x) dx$.

Solution

The limits involve fractions of π and this indicates that they are measured in radians not degrees.

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sin(-2x) dx = \left[\frac{1}{2}\cos(-2x)\right]_{\frac{\pi}{4}}^{\frac{\pi}{3}}$$
$$= \frac{1}{2}\cos\left(-\frac{2\pi}{3}\right) - \frac{1}{2}\cos\left(-\frac{\pi}{2}\right)$$
$$= \frac{1}{2} \times -\frac{1}{2} - 0$$
$$= -\frac{1}{4}$$

Example (7)

If $\frac{dy}{dx} = \sec^2 2x + \csc^2 3x$ find y

Solution $\frac{dy}{dx} = \sec^2 2x + \csc^2 3x$ $\int (\sec^2 2x + \csc^2 3x) dx = \int \sec^2 2x dx + \int \csc^2 3x dx$ $= \frac{\tan 2x}{2} - \frac{\cot 3x}{3} + c$

The form
$$\frac{a}{(bx+c)^n}$$

Certain integrands take the form $\frac{a}{(bx+c)^n}$ where *a*, *b*, *c* are real numbers and *n* is an integer $n \neq 1$.

This is a form of the basic polynomial function $y = x^n$ whose integral is

$$\int x^n \, dx = \frac{1}{n+1} x^{n+1} + c$$

so it can be directly integrated.

Example (8)

Find
$$\int \frac{9}{(3x-1)^5} dx$$

Solution

It may be instructive to show various trials. The function that we are integrating takes the form $\frac{1}{u^5}$ where u = 3x - 1 so we try first $u^{-4} = \frac{1}{u^4}$. Try $(3x - 1)^{-4} \implies \frac{d}{dx}(3x - 1)^{-4} = -4(3x - 1)^{-5}$

Try
$$-\frac{9}{4}(3x-1)^{-4} \implies \frac{d}{dx} - \frac{9}{4}(3x-1)^{-4} = -\frac{9}{4} \times -4(3x-1)^{-5} = \frac{9}{(3x-1)^{5}} \quad (\checkmark)$$

Hence

$$\int \frac{9}{(3x-1)^5} dx = -\frac{9}{4(3x-1)^4} + c$$

The form
$$\frac{f'(x)}{f(x)}$$

Certain integrands take the form $\frac{f'(x)}{f(x)}$ for a given function *f*.

Example (9)

(a) Using the chain rule differentiate each of the following (i) $y = \ln(x+3)$ (ii) $y = \ln(x^2)$ (iii) $y = \ln(f(x))$ f(x) > 0(b) What is the integral of $\frac{f'(x)}{f(x)}$?

Solution

(a) (i)
$$y = \ln(x+3)$$
 $x > -3$
 $\frac{dy}{dx} = \frac{1}{x+3} = \frac{1}{y}$
(ii) $y = \ln(x^2)$
 $\frac{dy}{dx} = \frac{2x}{x^2} = \frac{y'}{y}$
(iii) $y = \ln(f(x))$ $f(x) > 0$
 $\frac{dy}{dx} = \frac{f'(x)}{f(x)}$

(*b*) Since integration is the reverse operation to differentiation, the last result **suggests** that

$$\int \frac{f'(x)}{f(x)} dx = \ln(f(x)) + c$$

From example (9) we **conjecture** that $\int \frac{f'(x)}{f(x)} dx = \ln(f(x)) + c$. However, we must be careful here,

because logarithm is a function that is **not defined** for negative values. Therefore, if f(x) is negative then $\ln(f(x))$ is not defined. Suppose f(x) > 0 then, as in example (9)

$$\frac{d}{dx}\ln\left|f(x)\right| = \frac{d}{dx}\ln\left(f(x)\right) = \frac{f'(x)}{f(x)}$$

But if f(x) < 0 then |f(x)| = -f(x) and

$$\frac{d}{dx}\ln\left|f\left(x\right)\right| = \frac{d}{dx}\ln\left(-f\left(x\right)\right) = \frac{-f'(x)}{-f\left(x\right)} = \frac{f'(x)}{f\left(x\right)}$$

So whether f(x) > 0 or f(x) < 0 we have $\frac{d}{dx} \ln(f(x)) = \frac{f'(x)}{f(x)}$, but this shows that the correct

result for the reverse process is

$$\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + c.$$

The introduction of the modulus sign prevents the possibility arising of introducing an undefined and hence meaningless function as a result of attempting to integrate a function. Questions may test your understanding of this result

Example (10)

Find
$$\int \frac{3}{(6x+2)} dx$$

Solution

Try
$$\ln|6x+2| \Rightarrow \frac{d}{dx}\ln(6x+2) = \frac{6}{(6x+4)}$$

Try $\frac{1}{2}\ln|6x+2| \Rightarrow \frac{d}{dx}\frac{1}{2}\ln(6x+2) = \frac{1}{2} \times \frac{6}{(6x+4)} = \frac{3}{(6x+4)}$ (*)

Hence

$$\int \frac{3}{(6x+2)} dx = \frac{1}{2} \ln |6x+2| + c$$

Example (11)

Find
$$\int \left(\frac{5x}{(1-x^2)} + \frac{4}{(1-x)^3}\right) dx$$

Solution

$$\int \left(\frac{5x}{(1-x^2)} + \frac{4}{(1-x)^3}\right) dx = \int \frac{5x}{(1-x^2)} dx + \int \frac{4}{(1-x)^3} dx$$
$$= -\frac{5}{2} \ln\left|1-x^2\right| - \frac{1}{2(1-x)^2} + c$$

