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Dynamic Programming 
 
 
For a given weighted network (di-graph) there is the problem of finding the shortest 
(or longest) path from one vertex to another.  What is required is an algorithm that 
computes the shortest path.  Any such algorithm is called a greedy algorithm.  
Dynamic programming is a greedy algorithm for finding the shortest path through a 
network. 
 
Another algorithm for finding the shortest path is Dijkstra’s algorithm.  Dijkstra’s 
algorithm is quicker (more efficient) than Dynamic Programming, but does not have 
as broad scope 
 
(1) Dijkstra’s algorithm cannot be applied to cases where there are negatively 
weighted edges 
 
(2) Dynamic programming is more readily adapted to other problems – e.g. the 
problem of finding the longest path through a network. 
 
The dynamic programming algorithm: 
 
This algorithm works by systematically labelling vertices with two numbers;  
N = the stage at which the vertex was labelled, L = the length of the shortest path of 
that vertex from the starting vertex. 
 
The symbol (N; L) will denote the stage (N) at which the vertex was labelled and the 
minimum length (L) of that vertex from the starting vertex. 
 
 
STEP 1: Assign the label (0;0) to the starting vertex 
 
STEP 2: For a given stage, N, identify all vertices with labels (N; L) that 

have been already reached at that stage.  For each such vertex 
(N; L) find all vertices that can be reached from that vertex by a 
movement along a single edge.  Compute the length L + edge 
weight (L + W) for each such vertex.  Assign the temporary label 
(N + 1; L + W) to each such vertex.  Repeat the process until all 
vertices at the same stage, N, have been examined. 

 
STEP 3: Assign to each vertex with stage, label N + 1 the length L’ where 

L’ = minimum of all the temporary length labels.  Label the 
vertex (N + 1, L’) and delete all the temporary labels.  If a vertex 
has a label (N’, L) where N’ < N + 1 and L < L’ delete that label 
and replace it by the label (N + 1; L’). 
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Example 
 
The following network represents distances between towns in km. 
 

 
 
We will apply dynamic programming to find the shortest path from A to B. 
 
Stage 1: 
 

(0;0)

(1;6)

(1;5)

(1;8)  
 
 
 
 
 
 
Stage 2: 
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(0;0)

(1;6)

(1;5)

(1;8)

(2;14)
(2;11)

(2;15)

(2;22)

(2;15)(2;12)

(2;10)

 
Stage 3: 
 

(0;0)
(1;6)

(1;5)

(1;8)

(2;11)

(2;15)

(2;22), (3;14)
(3;20), (3;19)

(2;10)

 
 
So the shortest path from A to B has length 14 km and tracing backwards this is along 
the route:  A  R  Q  B. 
 
Just a word about the application of the algorithm to the above example.  In this 
example the network is not a directed network, thus, strictly speaking it is possible to 
trace backwards along an edge.  For example, vertex R at stage 3 should acquire the 
temporary label (3;16) by tracing back from Q with (2;11) to R along the edge with 
weight 5.  However, labels that obviously increase the distance have simply been 
omitted from the diagram.  They would be deleted anyway when temporary labels 
with distances longer than the minimum are deleted. 
 
Dynamic programming is a versatile approach to the problems relating to networks.   
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Example 
 
The following directed network shows potential bus links between a city centre (CC) 
and a suburb (S).  The edge weights indicate the average number of passengers 
collected along each section of the route.  The aim is to maximise the average number 
of passengers. 
 

CC

E

F

H

G

S

A B

C

D

 
 
Using dynamic programming the solution is: 
 

CC

E

F

H

G

S

A B

C

D
(0;0)

(1;8) (2;20)

(1;8)

(1;3)

(2;9)
(3;29)

(4;37)
(5;56)
(6;76)

(2;18)

(1;15)
(2;18),(2;22)
(3;26),(4;46)

(3;24),(3;40)
(4;44),(5;64)

 
 
Tracing backwards, the optimum route is: 
CC  E  F  G  C  D  S 
with maximum average numbers of passengers = 76 



 
 

© blacksacademy.net 
 
 

5 

 
 
Modelling decision processes 
 
Dynamic programming is particularly suitable for solving problems involving 
decisions in business or games.  But first, information about a decision process must 
be modelled by a directed network.  The model explored here involves labelling 
vertices by two variables – stage and state to label vertices. 
 
The stage variable corresponds to the number of stages required by the dynamic 
programming algorithm to reach that vertex.  The state variable will designate 
something of relevance to the problem under investigation – for example, a position 
on a board in a board game, the number of finished items in a store – and so forth.  In 
the modelling process vertices are first identified and labelled.  These represent 
possible outcomes of the decision making process.  Next, directed edges are drawn 
between the vertices corresponding to the decisions that are possible from one stage to 
the next.  Along the edge a weight variable indicates the outcome of that decision – 
for example, a profit made as a result of taking that option.  The edge may 
additionally be labelled with the decision taken for the purpose of clarity.  The 
direction of edge runs from one stage to the next. 
 
In a game, a player has at each turn three options – invest one money unit, consume 
one money unit, or work.  The aim of the game is to maximise happiness, which is 
measured in utility points.  (Each stage represents 10 years of time).  To consume you 
spend money points.  The utility obtained from consumption depends on the stage 
reached as follows: 
 
 Stage       
 1 2 3 4 5 6 7 
Utility 6 7 6 5 5 4 2 
 
Work produces return of one money unit at every stage. 
 
Investment at each stage returns three money units for 1 unit invested.  You may only 
invest if you have at least 2 money units. 
 
You must finish the game with 2 money units (one to pass on to your wife, and one to 
pay for your funeral). 
 
Solution 
 
 
 
The completed network, with the decisions relevant to each edge, is as follows 
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0 1 2 3 4 5 6 70

1

2

3

4

5

6

Stage

State W
C

W

W

C

I

W

W

W

W

W

W

C

C

C

C

C

C

C

I

I

 
 
The following digraph shows the edges with their weightings – that is, with the pay 
offs in terms of utility. 
 

0 1 2 3 4 5 6 70

1

2

3

4

5

6

Stage

State
0

7

6

5

5

5

5

4

4

2

0

0

0

0

0

0

0

0

0

0

 
 
We will now apply dynamic programming to find the optimum path from stage 0 to 
stage 7. 
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In this process it is regarded as correct to work backwards from the goal stage and 
state to the starting stage and state.  It is more efficient to do so.  We commence by 
labelling the final vertex (7 ; 0).  Here the stage is 7 and the pay-off is 0.  Working 
backwards, and applying the dynamic programming algorithm we obtain the 
following solution. 
 

0 1 2 3 4 5 6 70

1

2

3

4

5

6

Stage

State
0

7

6

5

5

5

5

4

4

2

0

0

0

0

0

0

0

0

0

0

( )3;11

( )1;14

( )3;14

( )3;6

( )4;6

( )2;6( )0;14

( )4;11

( )5;6

( )2;14

( )4;9

( )6;0

( )7;0
( )5;4

( )6 : 2

 
The maximum utility is 14 points; working forwards this is produced by the choices 
 
Stage Decision 
0 work 
1 work 
2 invest 
3 consume 
4 consume 
5 consume 
6 work 
 
You are expected to be able to display the entire solution in a tabular form 
representing every calculation including those of the temporary labels and the 
resultant choice of permanent labels at each stage.  The table partly represents what a 
computer would be doing at each stage of the calculation.  It is advisable to perform 
the calculation on the network by hand first and then transfer the solution to the table. 
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Stage Current 

state 
Previous 
decision 

Previous 
state 

Pay-off Permanent 
label 

7 2 WORK 1 0 YES 
  CONSUME 3 2 YES 
6 1 CONSUME 2 0 4 4   YES 
 3 WORK 2 2 0 2    
  CONSUME 4 2 4 6   YES 
5 2 CONSUME 3 4 5 9   YES 
 4 INVEST 2 6 0 6   YES 
 4 WORK 3 6 0 6    
 4 CONSUME 5 6 5 11   YES 
4 2 WORK 1 6 0 6   YES 
 2 CONSUME 3 6 5 11   YES * 
 3 CONSUME 4 9 5 14   YES 
 5 INVEST 3 11 0 11   YES * 
 5 WORK 4 11 0 11    
3 1 WORK 0 6 0 6   YES 
 1 CONSUME 2 6 6 12    
 3 WORK 2 11 0 11    
 4 INVEST 2 14 0 14   YES 
2 0 CONSUME 1 6 7 13    
 2 WORK 1 14 0 14   YES 
1 1 WORK 0 14 0 14   YES 
 
 
*  There are two possible lines of action at this stage giving the same utility – 
however, neither is a solution to the problem as a whole. 


