Error in an interpolating polynomial

Theorem

Given the function $f(\mathrm{x})$ and an interpolating polynomial $p(\mathrm{x})$ of the degree $\leq n$ such that
$p\left(x_{i}\right)=f\left(x_{i}\right)$ for $i=0,1 \ldots n$
and $x_{0}<x_{1}<\ldots<x_{n}$
Then the error can be denoted by
$\varepsilon(\mathrm{x})=p(x)-f(x)$
where x lies between x_{0} and x_{n} and is given by
$\varepsilon(\mathrm{x})=-\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right) \frac{f^{(n+1)}\left(C_{x}\right)}{(n+1)!}$
where C_{x} is a number such that
$x_{0} \leq C_{x} \leq x_{n}$

In this theorem we have
$\varepsilon(\mathrm{x})=-\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right) \frac{f^{(n+1)}\left(C_{x}\right)}{(n+1)!}$

The product $\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)$ ensures that
$\varepsilon\left(x_{i}\right)=0$ whereever $p\left(x_{i}\right)=f\left(x_{i}\right)$
The expression $f^{(n+1)}$ means the $(n+1)$ th derivertive of f.

This gives a prodedure for finding error bounds of interpolating polynomials.

1. You are given a function $f(\mathrm{x})$ and an interpolating polynomial $p(x)$ and points $x_{o}, x_{1}, \ldots x_{n}$, and the corresponding values $f\left(x_{0}\right), f\left(x_{1}\right), \ldots f\left(x_{n}\right)$.
2. Find the $(\mathrm{n}+1)$ th derivertiveof $f(x)$ and determine a value of M such that $\left|f^{(n+1)}(C)\right| \leq M$
for all the values of C between x_{0} and x_{n}.
3. Then a bound for the error is
$|\varepsilon(x)| \leq \frac{\left|\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)\right| M}{(n+1)!}$
