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Estimating Population Parameters 
 
 
 

 
Prerequisites 
 

(1) You should be familiar with the concept of a statistic and the distinction between a 

sample and a population.  You should understand the following diagram 

         population   observation   sample   statistic iX X Y Z  

You should grasp the ideas behind the following 

A statistic is drawn from a sample. 

A parameter is a property of a population. 

Statistics are used to estimate parameters. 

 

 Example (1) 

The diameter of gaskets manufactured by a company are distributed with mean 

  and standard deviation  .  A sample of 20 gaskets was taken and their 

diameters measured.  The sample is represented by the random variables 

1 2 20, , ...,X X X .  Which of the following are statistics? 

 (a)    1 2 20...Z X X X  

 (b) 
  

 1 2 20...

20

X X X
X  

 (c)    1 2 20... 20X X X  

 (d)     2
1 2 20...X X X  

 

 Solution 

The rule here is that a statistic must be a function of the observations only and 

cannot involve population parameters.  Hence (a) and (b) are statistics; (c) and (d), 

which involve the population parameters   and   are not. 
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Example (2) 

Several well-known probability distributions are described in terms of standard 

parameters.  State the parameters and their interpretation for each of the 

following probability distributions. 

(a) Binomial 

(b) Geometric 

(c) Poisson 

(d) Normal 

(c) Uniform continuous 

 

Solution 

(a) The binomial distribution is   ,X B n p  where n is the number of trials 

and p is the probability of success in any one trial. 

(b) The geometric distribution is  X Geo p  where p is the probability of a 

success. 

(c) The Poisson distribution is  X Po  where   is the mean (and 

variance) of the distribution. 

(d) The normal distribution is    2,X N  where   is the mean and  2  is 

the variance. 

(e) The uniform (or rectangular) continuous distribution is   ,X R a b  where 

a and b are the end-points of the interval over which X is uniform. 

 

Example (3) 

Define the terms population and statistic. 

 

Solution 

A population is a set of all possible observations of a certain phenomenon.  The 

phenomenon may be based on an event or an object, and collectively these are 

often referred to as individuals.  With each individual there is associated a 

property, and the association of this property with the individual is the 

phenomenon that is being observed.  A sample is a subset of a population.   

 

In this definition the terms population and individual may refer to actual people 

but they may refer also refer to inanimate objects, events or phenomena of any 

kind.  Examples of populations are (1) The height (property) of all men living on a 

certain island (individuals); (2) The position given relative to a set of coordinates 

(property) of all electrons (individuals) bound to a uranium atom; (3) The poker 
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value (property) of a hand of five cards dealt at random from a pack of 52 cards 

(individuals). 

  

(2) You should be familiar with the algebra of expectation and variance. 

 

 Expectation algebra 

 If X and Y are independent random variables and a and b are scalars, then 

       E aX bY aE X bE Y  

       E aX bY aE X bE Y  

     

     

  

  

2 2

2 2

var var var

var var var

aX bY a X b Y

aX bY a X b Y
 

 

Example (4) 

X is a random variable with mean   and variance  2 .  Independently, Y is a random 

variable with mean 3  and variance  22 .  Find the expectation and variance of the 

random variable  2 3U X Y . 

 

Solution 

   
   

 


 

 

  
 

2 3

2 3

2 3 3

7

E U E X Y

E X E Y
 

   
   
   

 


 

 

 

  



2 2

2 2

2

var var 2 3

var 2 var 3

2 var 3 var

4 9 2

22

U X Y

X Y

X Y  

 

 Example (5) 

Let 2X represent twice (i.e. a scalar multiple) the random variable X.  Let X X  represent 

the sum of two independent observations of the random variable X.  Determine in terms 

of  var X  the variance of  

(a)  2X  

(b) X X  

Explain why the expression X X  is ambiguous and should be avoided if possible.  

Propose an alternative notation. 
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Solution 

(a) This the scalar multiple by 2 of a single observation of the random variable X.  

      2var 2 2 var 4varX X X . 

(b) This is the sum of two independent observations of the random variable X. 

          var var var 2varX X X X X  

The expression X X  is ambiguous because it can be easily confused with the 

expression 2X, which stands for a totally different concept.  It is best to 

distinguish two independent observations of a single population by using 

subscripts, and it is better to write 1 2X X .  Then we can see clearly that we 

cannot add the two variables to obtain 2X. 

 

(3) You should be familiar with sequences of numbers and aware that such sequences may or 

may not converge to a limit. 

 

A sequence is any string of numbers in a given order.  It is usual to denote successive 

members of the sequence by letters with numerical subscripts. 

0 1 2 3,   ,   ,   ,  . . . . , ,   . . . . nu u u u u  

If the sequence tends towards a single value, then it is said to converge, or to be 

convergent.  Rules for proving that a given sequence converges is a whole topic in itself.  

Here we will permit informal arguments, and allow that if a sequence is obviously 

converging then it is converging.  Nothing will be lost by this loose approach since 

questions shall not be set directly on this concept.  It is a background concept. 

 

 Example (6) 

Write down the first four terms and the nth term of the sequence whose rth term is 

2 1

r

r
.  Assume that this sequence converges.  To what limit does this sequence 

converge? 

 

 Solution 




   
   

   
   




1 2

3 4

2 1
1 1 2 2

2 1 1 3 2 2 1 5

3 3 4 4

2 3 1 7 2 4 1 9

2 1

r

n

r
u

r

u u

u u

n
u

n
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When n is very large this gets closer and closer to 
1

2 2

n

n
.  It converges to 

1

2
. 

 

In this chapter we shall be assembling elements from each of these background topics to deal 

with the process of estimating population parameters by means of statistics drawn from samples. 

 

 Example (7) 

A fair cubical die may be assumed to follow a discrete uniform distribution with the 

probability of each number coming up equal to 
1

6
.  Let X stand for the random variable 

that is the result of throwing one die. 

(a) Find the expectation of X. 

(b) A sample of 10 die throws was taken and the results recorded as follows. 

 
    

    
1 2 3 4 5

6 7 8 9 10

5 4 1 3 2

6 1 4 5 4

X X X X X

X X X X X
 

The mean of the sample (a statistic) is calculated at each successive throw of the 

die.  Determine at each stage the statistical mean of the sample and thus generate 

a sequence of 10 numbers.   

(c) Form a conjecture as follow:  (1) conjecture whether sequence is convergent or 

divergent; (2) if it is convergent state the limit to which you think it is converging, 

otherwise explain why you think it is not convergent. 

 

 Solution 

(a)         
    1 2 3 4 5 6

3.5
6

E X x P X x   

 (b) The statistical means are computed as follows 

  


   

    
   

        
   

            
   

                
   

1 2

3 4

5 6

7 8

9 10

5 5 4
5 4.5

1 2
5 4 1 5 4 1 3

3.33 3.25
3 4

5 4 1 3 2 5 4 1 3 2 6
3 3.5

5 6
5 4 1 3 2 6 1 5 4 1 3 2 6 1 4

3.14 3.25
7 8

5 4 1 3 2 6 1 4 5 5 4 1 3 2 6 1 4 5 4
3.44 3.5

9 10

X X

X X

X X

X X

X X

 

(c) Whilst the sequence is oscillating it appears to be convergent.  We expect to 

converge on the theoretical expectation of the population, that is, on 3.5. 

 

We will in fact prove below that this conjecture is true.  Here the mean of the sample, given by  
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  sum all the values

total number of values
iX

X X
n

 

is a statistic.  It is also a variable since it takes different values at each successive stage as the 

number of observations in the sample increases (or as different samples of the same size are 

taken).  Therefore we should distinguish between the variable and the values that it takes.  We 

denote the variable by a capital letter, X and the values that it takes by a lower case letter x .  

Thus  3.25X  is interpreted as “the statistical sample mean takes the value 3.25”.  We have seen 

that as the sample size is increased this statistic takes different values.  The values themselves 

form a sequence, and we have conjectured that the sequence is convergent on the true 

(theoretical) mean of the distribution.   

 

In this example we relate the sample mean to an estimate of the true population mean (a 

parameter).  The process can be generalised to the estimation of other parameters of varying 

probability distributions.  So in general we use the term estimator to stand for the statistic that is 

the variable used to estimate a parameter and the term estimate to stand for the value that the 

statistic takes.  An unbiased estimator is a statistic that homes in on the true value of a population 

parameter. 

 

 Example (8) 

A die is suspected of being weighted so that it is an unfair die and hence biased.  It is 

thrown 20 times and the sample mean of the 20 throws is 5.  Conjecture whether this 

proves that the die is biased.  Assume that the sample mean is an unbiased estimator of 

the true population mean. 

 

Solution 

The point of this (open ended) question is that in this case the true population mean is 

unknown.  We suspect that it is not 3.5, which is what it would be if the die were fair. 

Therefore, the sample mean may be used as an estimator for the true population mean.  

After 20 throws of the die the estimate is 5.   

 

The question actually asks you to evaluate a hypothesis.  Hypothesis testing is not the 

subject of this chapter as such, and therefore we will give only an informal answer pr 

conjecture.  As the estimate for a sample size of 20 differs “significantly” from the 

expected mean we conclude that the hypothesis is not true, that the die is biased and its 

true population mean is in the region of 5 rather than 3.5.  In order to make this 

argument rigorous we would have to give a precise determination of the term 

“significantly” as we used it above. 
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Estimators 
 

An estimator is a statistic (variable) used to estimate a population parameter.  The actual value 

the estimator takes is called an estimate.   It is sometimes useful to adopt a distinct symbol for an 

estimator.  For example, suppose we wish to estimate the mean   and variance  2 of a 

population.  We shall denote estimators by the hat symbol.  Thus   2 and ˆ ˆ  stand for the 

estimators of   and  2  respectively.   

 

What is required of an estimator in general? 

 

(1) Firstly, we require that the estimator converges on a limit as the sample size increases.   

We call this condition consistency. 

 

Consistent estimator 

A statistic (estimator) T̂  is said to be consistent if   ˆvar 0 as T n  where n is the 

sample size.  (A sample size can approach   if the population is sampled with 

replacement.) 

 

If the variance of the estimator gets smaller and smaller as the sample size gets larger 

and larger this means that the estimator converges on a unique limit.  Obviously, a 

statistic that does not converge is a hopeless candidate for an estimator of a population 

parameter. 

 

 Example (9) 

A population X takes discrete values greater than 0 and is sampled n times.  Let 

1 2, , ..., nX X X  stand for the n observations.  Explain why the statistic 

    1 2
ˆ ... nZ X X X  

cannot be used as an estimator of any population parameter. 

 

Solution 

It is not consistent.  Since each observation is a real number greater than 0, the 

sum of all these observations must be divergent.  The variance of Ẑ  

             1 2
ˆvar var var ... var varnZ X X X n X  

is also divergent. 

 



 
 

© blacksacademy.net 
 

8 

(2) This shows that all estimators are statistics, but not all statistics are estimators.  Yet 

although an estimator must converge on a number (limit), being convergent is not 

sufficient to define an appropriate estimator.  We also require that an estimator converges 

on the true value of the parameter.  The point is that an estimator may converge, but not 

on the true value of the parameter.  An estimator that converges on the true value is said 

to be an unbiased estimator.  An estimator that converges but not on the true value is said 

to be a biased estimator. 

  

Unbiased estimator 

A statistic T̂  is said to be an unbiased estimator of a population parameter p if   ˆE T p .   

 

This says that the estimator not only does converge, but also is expected to converge on 

the real value of the population parameter.  Note that owing to chance factors it is always 

possible than an estimator does not actually converge on a true population parameter in a 

given practical application.  All we can say is that theoretically it should converge on the 

parameter and state what the probability is that it in fact has not.1 

 

Unbiased estimator of the population mean 

The sample mean, X , is an unbiased and consistent estimate of the population mean,  . 

 

Proof 

Let a population X be sampled n times.  Let 1 2, , ..., nX X X  stand for the n observations in the 

sample.  Then the sample mean is 

  
  1 2 ...i n

X X X X
X

n n
 

Then  

                           
 

1 2
1 2

... 1 1
... ...  timesn

n

X X X
E X E E X E X E X n

n n n
 

This proves that it is unbiased.  To prove that X  is consistent we shall first show that 

  


2

var X
n

. 

                      
1 The statement of probability is not dealt with in this chapter, but taken up in subsequent chapters when we 
deal with confidence intervals for population parameters. 



 
 

© blacksacademy.net 
 

9 

   

 

      

    





     
 

   

   

   

 



1 2

1 22

1 22

2 2 2
2

2
2

2

1
var var ...

1
var ...

1
var var ... var

1
...  times

1

n

n

n

X X X X
n

X X X
n

X X X
n

n
n

n
n

n

 

Then 


  
2

as  then 0n
n

.  Hence X  is consistent.  Note that this statement is part of the 

content of the central limit theorem. 

 

The central limit theorem 

If 1 2 3, , , ...., nX X X X  is a random sample of size n from any distribution with mean   and 

variance  2  then, for large n, the distribution of the sample mean X  is approximately normal and  


 
 
 


2

,X N
n

 where   1 2 3

1
, , , ...., nX X X X X

n
.  As  n  the approximation becomes better and 

better. 

 

Regarding this theorem, we have shown here that   E X  and that   


2

var X
n

.  What we have 

not shown is that X  is normally distributed. 

 

 Example (10) 

 The weights (in kg) of ten randomly chosen chickens from a farm were as follows. 

 2.3 2.8 2.6 1.9 2.5 2.4 3.1 2.5 2.6 2.0  

Assume that these weights can be regarded as a random sample from a    2,N  

distribution.  Calculate an unbiased estimate of  . 

 

Solution 

         
   2.3 2.8 2.6 1.9 2.5 2.4 3.1 2.5 2.6 2.0

2.47 kgˆ
10

ix

n
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Biased and unbiased estimators of the population variance 
 

The sample variance is the statistic    2
2

2 X
S X

n
. 

In fact this statistic is a consistent but biased estimator of the population variance  2 .  This 

means that whilst it does converge on a limit, the limit is not the same as the true population 

variance.  What we shall do first is prove that it is biased.  To do this we show   2 2E S .  First 

note that since          
22var X E X E X , we have 

 
   

 

 

 

 

2 2 2

2 2 2 1

E X

E X
 

From the central limit theorem we also have   


2

var X
n

, hence 

   

   



 

   

 

22
2

2
2 2 2

E X E X
n

E X
n

 

Then 

   

   

   

   

           

 

 

 

  

 
   

 

     

       
  

       
  

          
  

        











2
2

2

2
2

2
2

2
2 2

2
2 2 2 2 2 2

2
2 2 2

1

1

1
By result 2  above

1
..._  times

1
By res

X
E S E X

n

E X E X
n

E X nE X
n

E X n
n n

nE X n E X E X E X E X n
n n

n n
n n

 


 2

ult 1  above

1n

n

 

So 2S  does not converge on the true value of the population variance  2 .  (We will assume that it 

does converge).  It would, therefore, be a mistake to adopt  2 2 Sˆ . 

 

Unbiased estimator of the population variance 




2 2

1

n
s S

n
 is an unbiased estimator of the population variance.   
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This follows since   
2 21n

E S
n

 then               
2 2 21

1

n n
E s

n n
. 

 

Remarks 

(1) Keep a clear distinction between 2S  (upper case) used to denote the sample variance and 

2s  (lower case) used to denote the unbiased estimator of the population variance, both 

being related by the equation 


2 2

1

n
s S

n
.  Most calculators carry functions for both of 

these statistics.   

(2) It is again assumed that the sample is taken with replacement.  This means that an 

observation does not remove an object from the population.  This is why the sample size 

is potentially infinite.  The population may contain a finite number of items or events, but 

as these are never reduced, the sample may be as large as one likes and can always be 

made larger. 

(3) To prove that 2s  is a consistent estimator we should show that   2var 0 as s n .  It 

can in fact be proven that  
     

 
      


4 4

2
1 3

var
1

n E X n
s

n n
.  We omit this proof.  

From this it follows that   2var 0 as s n . 

(4) Observe also that  


1 as 
1

n
n

n
.  Hence  2 2  as S s n .  So in fact the practical 

difference between the biased and unbiased estimate is only significant when the sample 

size is small.  It is important theory to recognise that not all estimators are unbiased. 

 

Questions involving estimation are straightforward.  The main point is that when estimating 

variance it is the unbiased sample variance 2s  that is used, not the biased one 2S . 

 

 Example (11) 

Calculate the unbiased estimate for the population variance for the chickens sampled in 

example (10). 

 

Solution 

   

                   



        




 2

2

2 2 2 2 2 2 2 2 2 2
2.3 2.8 2.6 1.9 2.5 2.4 3.1 2.5 2.6 2.0

10
6.213

ix
E X

n
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       

 

       

   


2 22 2

2 2

var 6.213 2.47 0.1121

10
0.1121 0.125 3 s.f.

1 9

S X E X E X

n
s S

n

 

 

Example (12) 

The waiting time for a certain bus running during weekends was sampled on 50 

weekdays. The waiting time, t, for the sample was found to have 

   21631     58,127t t  

Calculate an unbiased estimate for the variance of the waiting time of the bus. Give your 

answer to 3 significant figures. 

 

Solution 

 

  

  

    

 




2

2
2

2 2

50 1631 58,127

1631
32.62

50

58127
(32.62) 98.4756

50

n t t

t
t

n

t
S t

n

 

 




 





2 2

1
50

98.4756
49
100.435

100 3 s.f.

n
s S

n

 

 

 

 

Estimating population parameters from linear combinations of 
samples 
 

We have observed above that the unbiased estimator of the population mean is the sample mean 

  
  1 2 ...i n

X X X X
X

n n
 

Note that the sample mean is itself a linear sum of the n observations in the sample, followed by a 

scaling with scale factor 
1

n
.   

     1 2 1 2

1 1
... Scaling by Sum of , ,...,  observations.n nX X X X X X X

n n
 

This raises the possibility of estimators that arise from other linear combinations together with 

scalings and transformations of independent random variables.   
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 Example (13) 

In example (4) we defined X to be a random variable with mean   and variance  2 ; and 

independently, Y to be a random variable with mean 3  and variance  22 .  Let U be the 

random variable   2 3U a X Y  where a is a constant. 

(a) Find the value of a that makes U an unbiased estimator for  . 

(b) Find the variance of this unbiased estimator. 

 

Solution 

(a) In the solution to example (4) we showed that 

               2 3 2 3 2 3 3 7E X Y E X E Y  

We require   E U .  Hence 

  

 

   
  

 

2 3

7

1

7

E a X Y

a

a

 

(b) We employ the rule        2 2var var varaX bY a X b Y . Hence 

   

    

    

  



   
 

 

 

  



2

2 2

2 2

2

1
var var 2 3

7

1
var 2 var 3

7
1

2 var 3 var
49
1

4 9 2
49
22

49

U X Y

X Y

X Y  

 

 

Most efficient estimator 
 

In the last section we saw that a linear combination of two random variables can be an estimator 

for a population parameter.  This means that a given population parameter might have several 

different estimators.  The question therefore arises, which of these estimators is the best?  The 

term “best” here is vague and requires clarification.  Best in the sense of “most efficient” means in 

this context the estimator that converges quickest on the true population parameter as the 

sample size n increases.  The speed of convergence is linked to the variance of the estimator.  The 

smaller the variance the faster the estimator converges.  Therefore, the best estimator, in the 

sense of “most efficient”, is the estimator with the smallest variance. 
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Most efficient estimator 

The most efficient estimator of a population parameter p is the estimator with the smallest 

variance. 

 

 Example (14) 

Let X be a random variable with mean   and variance  2 ; and independently, Y be a 

random variable with mean 3  and variance  22 .  Let U and V be estimators for   such 

that 

      
1

2
4

U X Y V b X Y  

(a) Show that U is an unbiased estimator for   and find the value of b that makes V 

an unbiased estimator of  . 

(b) Find the variances of both these unbiased estimators and hence determine which 

of the two is the more efficient. 

 

Solution 

(a)                         

1 1 1
3

4 4 4
E U E X Y E X E Y  

 

 

 

 





  



 

 



2

2 3

1

5

E V

b E X Y

b

b

 

(b)                       
 

2 2 2 21 1 1 3
var var var var 2 0.1875

4 16 16 16
U X Y X Y  

 

   

    

         

   
 

 

     2 2 2 2

1
var var 2

5

1
var 2 var

25

1 1 6
4var var 4 2 0.24

25 25 25

V X Y

X Y

X Y

 

 Therefore U is the more efficient estimator. 

  

Most efficient estimator for a population mean 

The sample mean,       1 2

1 1
...i nX X X X X

n n
, is the most efficient linear estimator of the 

population mean,  . 
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Proof 

This proof is optional.  The proof will be by contradiction.  We have shown above that 

  


2

var X
n

.  Now assume that there is another linear unbiased estimator of   that is more 

efficient than X .  Let this alternative estimator be T̂ .  Then T̂  is given by 

   1 1 2 2
ˆ ... n nT a X a X a X  

for some constants 1 2, ,..., na a a .  Since T̂  is unbiased we have   ˆE T .  Now 

   
     

 
  



   

   

   

   

1 1 2 2

1 1 2 2

1 2

1 2

ˆ ...

...

...

...

n n

n n

n

n

E T E a X a X a X

a E X a E X a E X

a a a

a a a

 

Therefore, since   ˆE T , then  

    1 2 ... 1 1na a a  

The variance of T̂  is given by 

   

        

      

   

   

   

1 1 2 2

2 2 2

1 2

2 2 2 2
1 2

ˆvar var ...

... var

...

n n

n

n

T a X a X a X

a a a X

a a a

 

We have assumed that T̂  is more efficient than X .  Hence    ˆvar varT X .  This implies 

      
       

   

   

2
2 2 2 2

1 2

2 2 2

1 2

...

1
... 2

n

n

a a a
n

a a a
n

 

Now 

        

                    
     
                   
     

         


2 2 2

1 2

2 2 21 2 2
1 2 22 2 2

2 2 2

1 2 1 2 2

1 1 1
... 0 This is a sum of squares, and squares are always >0

1 1 1
2 2 ... 2 0

2 1
... ...

n

n n

a a a
n n n

a a a
a a a

n n n n n n

a a a a a a n
n n

        




           
2 2 2

1 2 1 2

0

2 1
... 0 By 1 : ... 1n na a a a a a

n n

 

      
      

    

   

2 2 2

1 2

2 2 2

1 2

1
... 0

1
...

n

n

a a a
n

a a a
n
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This statement contradicts statement (2).  Therefore the assumption that T̂  is a more efficient 

estimator than X  must be false. 

 

We state also (but without proof) the following. 

 

Most efficient estimator for a population variance 

The unbiased estimator of a population variance given by 


2 2

1

n
s S

n
 where 2S  is the sample 

variance is also the most efficient estimator for the population variance. 

 

Questions may be set requiring you to find in a given context the most efficient estimator for a 

population parameter. 

 

 Example (15) 

The random variable X follows a Poisson distribution with parameter  .  Independently, 

the random variable Y follows a Poisson distribution with parameter 2 .  Consider the 

estimator 


  


2

2

kX Y
W k

k
 

(a) Show that W is an unbiased estimator for   for all possible values of k. 

(b) Find the variance of W in terms of k and  . 

(c) Hence find the value of k that gives the best estimator of this form. 

 

Solution 

 

 

    

    

    

 


 



   

 

( )
2

1

2
1

2
1 2

2
2 2

kX Y
a E W E

k

E kX Y
k

kE X E Y
k

k
k

k k

 

 

 
    

 
    

 


    

 


 







2

2
2

2

2

( ) var var
2

1
var var

2

1
var var

2

2

2

kX Y
b W

k

kX Y
k

k X Y
k

k

k
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We have to find the value of k that makes the function  
 






2

2

2

2

k
f k

k
 a minimum.  

Differentiating 

 
 

     
 

   
 

     
  

   




  
  



2

2

2 2

4

2

3

2

2

2 2 2 2 2

2

2 2 2 2
2

2

d k
f k

dk k

k k k k

k

k k k
k

k

 

For turning points 

      

   




2

2 2

2 2 2 2 0

2 4 2 4 0

4 4

1

k k k

k k k

k

k

 

We should show that this is a minimum.  To do this, examine values of  f k  

around  1k .  When  1k ,  
 

  


3

4 4
0

2

k
f k

k
.  When  1k ,  

 
  


3

4 4
0

2

k
f k

k
, so 

this is a minimum. 

 

 

 

Estimators of probability 
 

Consider a population where the probability of a certain event is unknown.  Let a sample be 

drawn from this population.  We wish to derive an estimator for the unknown probability from 

the sample. 

 

 Example (16) 

The discrete random variable X takes the values “success” and “failure”.  The probability 

of a success, which is unknown, is  .  A random sample of n observations on X is taken.  

N denotes the number of times the value “success” occurs in the sample. 

(a) State the probability of a failure. 

(b) State the probability distribution of N. 

(c) Prove that the statistic  ˆ N

n
 is an unbiased estimator for  . 

(d) Find the variance of ̂  and deduce that ̂  is an unbiased, consistent estimator 

for  . 
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Solution 

(a)   successP  

 By the law of total probability 

    failure 1P  

(b)   ,N B n  

(c)                      
1 1ˆ if ,  then 

N
E E E N n X B n p E X np

n n n
 

 Hence, since   ˆE , ̂  is unbiased. 

(d)                    
  2 2

1 1 1ˆvar var var 1 1
N

N n
n n n n

 

         if ,  then var 1X B n p X np p  

          
1ˆ var 1 0  as n
n

 

 Hence ̂  is an unbiased, consistent estimator for  . 

 

This example deals with the essential theory that underlies questions where an unknown 

probability is estimated. 

 

Most efficient estimator for a population probability 

Let X be a discrete random variable and let P be an event.  Let the probability that P occurs be  .  

If N is the number of times P occurs in a sample of size n, then the most efficient estimator for   

is  ˆ N

n
. 

 

Example (17) 

The discrete random variable X takes the values 1, 2, 3 with probabilities   , 2 ,  

respectively, where   is a constant  
1

0
3

.  In order to estimate   a random sample of 

n observations of X was taken. 

(a) Find   and write down the probability distribution of X in terms of   alone. 

Determine     and varE X X . 

(b) Let X  denote the mean of the n observations in the random sample of X.  

Consider the estimator 

  
1̂ 4

a X
 

 where a is a constant.   
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(i) Find the value of a that makes 1̂  an unbiased estimator for  . 

(ii) Find the variance of 1̂ . 

(c) Let N denote the number of occurrences of the value 2 in the sample.  Another 

possible estimator is  

  2̂ 2

N

n
 

 (i) Show that is an unbiased estimator for  . 

 (ii) Find the variance of 2̂ . 

(d) (i) Show that       2 1
ˆ ˆvar var

8n
. 

 (ii) State, with a reason, which is the better estimator. 

 

Solution 

(a) By the law of total probability        1 2 1 3  

The probability distribution of X is 

x 1 2 3 

 P X x    2  1 3  

 

 

   
   



 

      

 


1 2 2 3 1 3

3 4

E X x P X x

 

 

   
   



 

      

 

2 2

2 2 21 2 2 3 1 3

9 18

E X x P X x

 

 

     
 
 

 

  

 

    

   

    

 

22

2

2

2

var

9 18 3 4

9 18 9 24 16

6 16

X E X E X

 

 

  
      

 





  

 



 
 

 

 

      

  



1̂( ) ( )

4

1

4
1

3 4
4

3

4 4
3

b i E

a X
E

a E X

a E X E X

a

a
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 

 

 

 

      

 

 

 



 

 

 
  

 

 



     
 

   

 

 

 

1

1 2

1 22

2

2

ˆ( ) var var
4

1
var

16
1

var
16
1 1

var ...
16

1
var var ... var

16
1

var
16

1
6 16

16
1

3 8
8

n

n

a X
ii

a X

X

X X X
n

X X X
n

n X
n

n

n

 

 

   



        
 



2

( ) ,2

1 1ˆ( ) 2
2 2 2

c N B n

N
i E E E N n

n n n

 

                      
 

2 2 2

1 1 1ˆ( ) var var var 2 1 2 1 2
2 4 4 2

N
ii N n

n n n n
 

       

 

     

  



    

   



2 1

1 1ˆ ˆ( ) ( ) var var 1 2 3 8
2 8

4 8 3 8
8

8

d i
n n

n

n

 

 

   

   

 



 



 



2 1

2 1

1

( ) We have

ˆ ˆvar var
8

Since  and 8  are positive

ˆ ˆvar var

ˆHence  is the better estimator 

i

n
n  

 

  


