Exponential and Natural Logarithm

Prerequisites

This chapter builds on you knowledge of exponential functions and logarithms. Consider the graphs of $y=2^{x}, y=3^{x}$ and $y=5^{x}$ for values $-1<x<1$.

These are all curves corresponding to exponential functions of the form $y=a^{x}$.
This may also be written
$y=\exp _{a} x$.
This makes it clear that y is the value of a function that we call exponent, which depends on two arguments, both of which may be any real number positive or negative - a variable x and a base a. Functions of the form $y=a^{x}$ comprise a family of functions, which are all similar in certain ways. All the curves have the same basic shape. They are always increasing. The curves are asymptotic to the negative x-axis. They pass through the point $(1, a)$. They all pass through the point $(0,1)$. The curves differ from each other only in their degree of steepness: $y=5^{x}$ is steeper than $y=3^{x}$ which is steeper than $y=2^{x}$.

It is usual to regard the number a, called the base, as fixed, and the number x as variable. Exponent, for a given base, is a function of the variable x.

The general graph of the exponential function $y=a^{x}$

Transformation of graphs of exponential functions

You should also already be familiar with transformation of graphs by horizontal and vertical translations and scalings, including reflections of graphs in the x and y-axes.

Example (1)

Use your knowledge of transformation of graphs to sketch $y=a^{-x}$.

Solution
$y=a^{-x}$ is the reflection of $y=a^{x}$ in the y-axis

Example (2)

(a) On the same graph sketch (1) $y=2^{x}$, (2) $y=2^{x-2}$ and (3) $y=-2^{x-2}$
(b) How may the graph of $y=-2^{x-2}$ be obtained from the graph of $y=2^{x}$ by a series of transformations?

Solution
(a) Graphs of
(1) $y=2^{x}$
(2) $\quad y=2^{x-2}$
(3) $y=-2^{x-2}$

(b) $\quad y=2^{x-2}$ is obtained from $y=2^{x}$ by a horizontal translation
$x \rightarrow x+2$
$y=-2^{x-2}$ is obtained from $y=2^{x-2}$ by a reflection in the x-axis
$y \rightarrow-y$

Logarithm

The logarithm is the inverse of the exponential function. It is written
$y=\log _{a} x$
This is read "log to the base a, x ".
Like the exponential function logarithm depends on two numbers, the base and exponent.

The inverse of a function is the reflection of that function in the line $y=x$.

The logarithmic function $y=\log _{a} x$ like the exponential function $y=a^{x}$ is an always-increasing function. However, whereas $y=a^{x}$ gets steeper and steeper, the rate of increase of $y=\log _{a} x$ gets less and less. Nonetheless, it is always going up. It passes through the point $(1,0)$ on the x axis, and is asymptotic to the negative y-axis. It is undefined for negative values of x, so the domain is the positive real line $x>0$, and 0 is not included in the domain.

A special exponential function

A special exponential function is
$y=e^{x}$.
Here, the symbol e stands for a special number, $e=2.7182818 \ldots$
The dots indicate that the decimal expansion of e carries on indefinitely. It is an irrational number - which means that it has an infinite, non-repeating decimal expansion. ${ }^{1}$ The importance

[^0]of e derives from the fact that the gradient of the tangent to $y=e^{x}$ at x is equal to the value of $y=e^{x}$ at x. This is written $\frac{d}{d x} e^{x}=e^{x}$.

The gradient of the tangent to $y=e^{x}$ at any given point is the same as its derivative. ${ }^{2}$ So the expression $\frac{d}{d x} e^{x}=e^{x}$ also says that the derivative of $y=e^{x}$ at x is equal to the gradient of $y=e^{x}$ at x. Because of this property $y=e^{x}$ is regarded as the fundamental exponential function. Consider the following table

Operation	Objects	Zero operation	Example	Explanation
Addition	Numbers	Adding zero	$5+0=5$	Adding 0 to any number does not change that number
Multiplication	Numbers	Multiplying by 1	$5 \times 1=5$	Multiplying any number by 1 does not change that number

The property
$\frac{d}{d x} e^{x}=e^{x}$
makes $y=e^{x}$ a special function with regard to differentiation in a way that is similar to how zero is special to addition and 1 is special to multiplication. The analogy is not exact, but it may help you to appreciate the importance of the function $y=e^{x}$ and its role in differentiation.

Natural logarithm

The inverse of fundamental exponential function $y=e^{x}$ is called the natural logarithm. It is denoted by
$y=\log _{e} x$
or
$y=\ln x$.
The second of these forms is read, " y equals lin x ". Whilst the expression $y=\log _{e} x$ makes it clear that the natural logarithm is taken to base e, we will adopt the symbolism $y=\ln x$ throughout our course. The following mapping diagram makes the relationship between $y=e^{x}$ and $y=\ln x$ clear.

[^1]© blacksacademy.net

From this we may write
$x=e^{\ln x}$
$x=\ln \left(e^{x}\right)$
both of which follow from the definition of $y=\ln x$ as the inverse of $y=e^{x}$. Since these functions are so important in mathematics calculators have buttons for them, so evaluating a number to the power e or a natural logarithm poses no practical difficulties.

Example (3)

In this question give any numerical answers to 4 significant figures.
(a) Use a calculator to evaluate
(i) $\quad e^{4}$
(ii) $\quad e^{-0.3}$
(iii) $\quad \ln 4$
(iv) $\quad \ln (0.3)$
(b) Why is it not possible to evaluate $\ln (-0.3)$?
(c) Solve the equations
(i) $2=e^{x}$
(ii) $-2=\ln x$
(d) Why is it not possible to solve the equation $e^{x}=-0.3$?

Solution

(a) (i) $\quad e^{4}=54.598 \ldots=54.60$ (4 s.f.)
(ii) $\quad e^{-0.3}=0.740818 \ldots=0.7408(4$ s.f. $)$
(iii) $\quad \ln 4=1.386294 \ldots=1.3863(4$ s.f.)
(iv) $\ln (0.3)=-1.203972 \ldots=1.204$ (4 s.f.)
(b) Logarithm is undefined for a negative number.
(c) (i) $2=e^{x}$
$x=\ln 2=0.693147 \ldots=0.6931$ (4 s.f.)
(ii) $-2=\ln x$
$x=e^{-2}=0.1353352 \ldots=0.1353$ (4 s.f.)
© blacksacademy.net $y>0$ for all arguments x. Likewise, the equation $e^{x}=-0.3$ leads to $x=\ln (-0.3)$ and logarithm is undefined for negative x.

Change of base

Since all exponential functions have the same basic shape any exponential function can be transformed into one of the others by a change of base. For instance, the function
$y=2^{x}$
can be transformed into the function
$y=3^{k x}$
by a change of base.
Let $y=2^{x}$
Then, $\log _{3} y=\log _{3} 2^{x}$
$\log _{3} y=x \log _{3} 2$
$y=3^{x \log _{3} 2}$
Since, $y=e^{x}$ is the fundamental exponential function, it makes sense in many cases to rewrite one exponential function in terms of e^{x}.
If $y=a^{x}$ then $y=e^{x \ln a}$

Example (4)

Use a calculator to write
$y=7^{x}$
in the form
(i) $y=e^{x \ln a}$
(ii) $\quad y=2^{k x}$

For real numbers k and a, giving these to 4 significant figures.

Solution
(i)

$$
\begin{aligned}
& y=7^{x} \\
& \ln y=\ln 7^{x}=x \ln 7 \\
& y=e^{x \ln 7}=e^{1.946 x} \quad(4 \text { s.f. })
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& y=7^{x} \\
& \log _{2} y=\log _{2} 7^{x}=x \log _{2} 7 \\
& \log _{2} 7=\frac{\ln 7}{\ln 2}=2.80735 \ldots \\
& \log _{2} y=2.80735 \ldots x \\
& y=2^{2.807 x} \quad(4 \text { s.f. })
\end{aligned}
$$

Derivative of the natural logarithm

The derivative of the natural logarithm ${ }^{3}$ is give by
$\frac{d}{d x} \ln x=\frac{1}{x}$
If $f(x)=\ln x$ then $f^{\prime}(x)=\frac{1}{x}$

Example (5)

Integrate the following functions with respect to x.
(i) x^{-2}
(ii) x^{-1}
(iii) x^{0}
(iv) x
(v) x^{2}

Solution

(i) $\int x^{-2} d x=-x^{-1}+c=-\frac{1}{x}+c$
(ii) $\int x^{-1} d x=\ln x+c$
(iii) $\int x^{0} d x=\int 1 d x=x+c$
(iv) $\int x d x=\frac{1}{2} x^{2}+c$
(v) $\int x^{2} d x=\frac{1}{3} x^{3}+c$

As the example shows
$\frac{d}{d x} \ln x=\frac{1}{x}$
fills in the missing gap for $x^{-1}=\frac{1}{x}$ for the differentiation and integration of polynomial functions.

[^2]© blacksacademy.net

[^0]: ${ }^{1}$ The definition and evaluation of the number e is beyond the level of this chapter. Here it may be taken to be the number such that $\frac{d}{d x} e^{x}=e^{x}$.

[^1]: ${ }^{2}$ Proof of this result is beyond the level of this chapter.

[^2]: ${ }^{3}$ Proof of this result is beyond the level of this chapter.

