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Exponential Growth and Decay 
 
 
 

Prerequisites 
 
(1) Exponential functions 

You should be familiar with the properties of exponential functions.  Recall that the 

exponential functions are a family of functions with the same general rule.   

 xx a  

This means multiply a by itself x times.  This function depends on two numbers, a and x.  

Sometimes the function is written   exp x
a x a .  It is usual to regard the number a, called 

the base, as fixed, and the number x as variable.  The exponent function, for a given base, 

is a function of the variable x.  The graphs of these functions all have essentially the same 

shape.   
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The general graph of the exponential functions  xy a  and  xy a . 

 

Exponential functions  xy a  are a monotone increasing functions.  Their graphs are 

asymptotic to the negative x –axis.  They all pass through the point  0,1 . The curves 

differ from each other only in their degree of steepness:  5xy  is steeper than  3xy  

which is steeper than  2xy .  The exponential function  xy a is the reflection of  xy a  

in the y-axis 

(2) Logarithm 

The inverse of the exponential function  xy a  is logarithm, which is written 

 logay x  
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Logarithm depends on two numbers, the base a and the argument x.  In the expression  

 logy x  it is assumed that the base is 10.  The graph of  logay x  is the reflection of 

that function in the line y x  of the graph of  xy a . 
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The logarithmic function  logay x  like the exponential function  xy a  is an always-

increasing function.  The rate of increase of  logay x  gets less and less.  It passes 

through the point  1,0  on the x-axis, and is asymptotic to the negative y-axis.  It is 

undefined for negative values of x, so the domain is the positive real line  0x , and 0 is 

not included in the domain. 

(3) Natural exponent 

A special exponential function is 

 xx e  

Here, the symbol e stands for a special number, e = 2.7182818…. This is an irrational 

number.  The importance of e derives from the fact that the gradient of the tangent to 

 xy e  at x is equal to the value of  xy e  at x.  This is written x xd
e e

dx
. 

(4) Natural logarithm 

The inverse of fundamental exponential function  xy e  is called the natural logarithm.  It 

is denoted by  

 logey x  or  lny x . 

The definition of the natural logarithm,  lny x ,  as the inverse of  xy e  entails 

   ln   lnx xx e x e  
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(5) Algebra of logarithms 

 Logarithms are manipulated according the following rules 

5.1 Addition 

  log log loga a ab c bc  

5.2 Subtraction 

 log log loga a a

b
b c

c
 

5.3 Index 

log log n
a an b b  

5.1 Change of Base 


log

log
log

c
a

c

b
b

a
 

(6) Change the base of an exponent 

Since all exponential functions have the same basic shape any exponential function can be 

transformed into one of the others by a change of base.  The function  xy a  can be 

transformed into the function  lnaxy b .  Since,  xy e  is the fundamental exponential 

function, it makes sense in many cases to rewrite one exponential function in terms of ex. 

If   ln then x x ay a y e  

(7) Derivatives 

 x xd
e e

dx
 

      ln lnln lnx x a x a xd d
a e a e a a

dx dx
 


1

ln
d

x
dx x

 

 
   
 

1 1
log ln

ln lna

d d
x x

dx dx a x a
 

 

 Example (1) 

 Solve the equation 

  2 5 2x xd
e e

dx
 

  

  Solution 

  
 

  

2

2

5 2

2 5 2 0

x x

x x

d
e e

dx

e e
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   

 



  

  

 

 

     
 

2

Sub 

2 5 2 0

2 1 2 0

1
  or  2

2
1

  or  2
2

1
ln = 0.693  or  ln2 0.693 3 s.f.

2

x

x x

u e

u u

u u

u u

e e

x x

 

 
 
 

Modelling real life situations by exponential functions 
 
In a certain quiz game the prize money is doubled each time the contestant gets an answer right; 

the contestant stops as soon as she gets an answer wrong.  She starts with £1.  Assuming that the 

contestant gets every question right, her winnings are an example of exponential growth.  The 

contestant’s winnings can be tabulated as follows. 

 

No. of right 

questions 
0 1 2 3 ….. n 

Winnings 20 = 1 21 = 2 22 = 4 23 = 8 …. 2n 

 

In this example it does not make sense to talk of fractions of a right question – at the end of the 

contest she has a whole number of right questions.  Her winnings are modelled by the exponential 

growth function 

  winnings £ 2 for  as an integern n  

The term model is used here when we apply a mathematical structure to a real life situation.  In 

this case the contestant’s winnings (real life property) are mirrored by a mathematical function.  

This predicts how much the contestant will win as a function of the number of questions is a row 

that she gets right. 

 

In other cases it is useful to model a real life situation by an exponential function with rational or 

real indices.  For example, when bacteria grow in an environment that places no limitations on 

their population size, their population exhibits exponential growth.  If the population doubles 

every 10 hours, it is still sensible to ask what the population is at intermediate times, for example, 

after 12.3 hours. 
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Exponential growth 
 

An exponential growth function has the form 

 0
ty A e  

where  0  is the inital value and 0A  is a constant.   

 

0A

y

t

y e=     
t

10

e0A

0A

 

Graph of an exponential growth function 

 

An example of exponential growth is “every ten years the population doubles”.   This has equation 

 10
0 2

t

P P  where 0P  is the initial population.  By a change of base this is also 
ln2

10
0

t

P P e . 

 

 Example (2) 

The size P of the population of a habitation is modelled as a continuous function of the 

real variable t, where t is in years.   

 0
ktP P e  

The initial size of the population at the foundation of the habitation is 10.  At 100 years 

the population is 1 99P .   

(a) Determine 0P  and k in  0
ktP P e .  Give your answer for k as an exact logarithm. 

(b) The habitation may be defined to be a metropolis when the population reaches 

1,000,000 inhabitants.   In what year after the foundation will the habitation 

become a metropolis?   

 

Solution 

 (a) We are given 0 10P  therefore we have  10 ktP e  

  When   1100 we have 99t P P ; therefore, on substituting into  10 ktP e  
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   

 









100

100

99 10

9.9

100 ln 9.9

1
ln 9.9

100

k

k

e

e

k

k

 

 

 

 

   

 
 

 
 
 

 
 
 





   
 

  

1
ln 9.9

1006

1
ln 9.9

1005

5

5

( ) 10 10

10

1
ln 10 ln 9.9

100

ln 10
100 502.19...

ln 9.9

t

t

b e

e

t

t

 

The answer is the next whole integer up,  503 yearst .  That is, in the 503rd year 

after the foundation. 

 

 

Exponential decay 
 

An exponential decay function has the form 

 0   ty A e  

where  0  is the initial value and 0 is a constantA .  This constant is called the decay constant.  
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Graph of an exponential decay function 

 

As the graph indicates a decay function has a half-life, which is the time period after which the 

value of the function is halved.  The half-life is denoted by the symbol 1 2T .  An example of a 
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decay function is “every 5730 years the quantity of radioactive carbon-14 is halved.”  The half-life 

is 1 2 5730T .  The relationship between the half-life and the decay constant is 


1 2

ln2
T  

 

 Example (3) 

Given  0
ty A e  and the definition of half-life, 1 2T , as the time taken for the value of this 

function to be halved, prove 


 1 2
1 2

ln2 ln2
  and  T

T
. 

 

Solution 






















 








 

1 2

1 2

1 2

0

0
1 2

0
0

1 2

1 2
1 2

Let  

When  we have .  Hence
2

2
1

2

2

ln2

ln2 ln2
and  

t

T

T

T

A A e

A
t T A

A
A e

e

e

T

T
T

 

 

Example (4) 

When a certain quantity of hot water cools it is thought to modelled by an exponential 

decay function of the form 

  0.02tAe  

where   is the temperature above room temperature, A is a constant and t is the time in 

minutes.  A room has a constant temperature of 25C and the temperature of a water bath 

is 75C when  0t .  Find the temperature of the water bath when  20t . 

 

Solution 








  


    




     

0.02

0

0.02 10 0.2

0 75 25 50

50

50

10 50 50 40.9

tAe

t

Ae

A

t e e C

 

    So the temperature of the water bath is 25 40.9 65.9 nearest 0.1C  
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Example (5) 

A radioactive source is placed at a distance from a Geiger counter.  At time t = 0, the 

count is 1000; at time t = 4s, the count is 690.  Find the decay constant and the half-life 

for this radioactive substance. 

 

Solution 

 























   

 



 

 



0

0

4

4

Let the count be ,  then the decay has the form

Since 1000 when 0, 1000,  and 1000

Also, 690 when 4

Hence

690 1000

690
0.690

1000

4 ln 0.690

0.0928 2 s.f.

t

t

A

A A e

A t A A e

A t

e

e

  

 








1
2

ln2

ln2

0.0928
7.47 s 2 s.f.

T

 

 

 


