First Isomorphism Theorem for Groups

Quotient groups and the first isomorphism theorem

Lemma, coset group

Let *N* be a normal subgroup of a group, *G*. Let *multiplication of cosets* of *N* be defined by $(Ng_1)(Ng_2) = N(g_1g_2)$

Let the set of cosets of *N* in *G* be denoted by $\frac{G}{N}$; Then

1. $\frac{G}{N}$ with the operation of multiplication of cosets is a group.

2. There exists a homomorphism

 $\phi: G \to \frac{G}{N}$ such that $\ker(\phi) = N$

 $\frac{G}{N}$ is called the *quotient group* or *factor group* of *G* by *N*.

Proof

2.

1. We must first show that multiplication of cosets is well defined.

Let $Ng_1 = Ng_1'$ and $Ng_2 = Ng_2'$ We must show $Ng_1g_2 = Ng_1'g_2'$. Now $Ng_1 = Ng_1' \Rightarrow g_1' = n_1g_1$ $Ng_2 = Ng_2' \Rightarrow g_2' = n_2g_2$ where $n_1, n_2 \in N$ $g_1'g_2' = n_1g_1n_2g_2$ Since $N \lhd G$ then $g_1n_2g_1^{-1} \in N \Rightarrow g_1n_2g_1^{-1} = n_3 \in N \Rightarrow g_1n_2 = n_3g_1$ Hence $g_1'g_2' = n_1n_3g_1g_2 \Rightarrow g_1'g_2' \in Ng_1g_2$ since $n_1n_3 \in N$. Hence $Ng_1g_2 = Ng_1'g_2'$ as required. Now we must show that $\frac{G}{N}$ with the operation of multiplication of cosets is a group. This requires verification of the group axioms.

2.1 Closure

Let
$$Ng_1$$
 and $Ng_2 \in \frac{G}{N}$, then $(Ng_1)(Ng_2) = Ng_1g_2 \in \frac{G}{N}$.

2.2 Identity

The identity in
$$\frac{G}{N}$$
 is *N*, for $(N)(Ng) = (N1)(Ng) = N1g = Ng$

2.3 Inverses

The inverse of
$$(Ng)$$
 in $\frac{G}{N}$ is (Ng^{-1}) for $(Ng)(Ng^{-1}) = Ngg^{-1} = N$

2.4 Associativity

$$((Ng_1)(Ng_2))(Ng_3) = (Ng_1g_2)(Ng_3)$$
$$= N((g_1g_2)g_3)$$
$$= N(g_1(g_2g_3))$$
$$= (Ng_1)(Ng_2g_3)$$
$$= (Ng_1)((Ng_2)(Ng_3))$$

3. Let

$$\phi \begin{cases} G \to \frac{G}{N} \\ g \mapsto gN \end{cases}$$

Then ϕ is a homomorphism since

$$\phi(g_1g_2) = Ng_1g_2 = (Ng_1)(Ng_2) = \phi(g_1)\phi(g_2)$$

Then
$$\ker(\phi) = \left\{g \in G | \phi(g) = N\right\}$$
$$= \left\{g \in G | Ng = N\right\}$$
$$= \left\{g \in G | g \in N\right\}$$
$$= N$$

Definition, natural homomorphism

The homomorphism

$$\phi \begin{cases} G \to \frac{G}{N} \\ g \mapsto gN \end{cases}$$

is called the *natural homomorphism* from G onto $\frac{G}{N}$.

Result, quotient groups

1. Quotient groups of cyclic groups are cyclic.

2. Quotient groups of Abelian groups are Abelian.

<u>Proof</u>

This is a direct consequence of the result that homomorphisms map cyclic groups to cyclic groups, and Abelian groups to Abelian groups. Though this should be proven somewhere.

Theorem, kernel

The kernel of a group homomorphism $\phi: G \to H$ is a normal subgroup of *G*. I DO NOT HAVE A PROOF IN THE PROJECT OF THIS AS YET, PROBABLY IN M203

Theorem, correspondence

Let ϕ : $G \to H$ be a group homomorphism. Then there exists a one-one correspondence between cosets of ker(ϕ) and elements of Im(ϕ).

I DO NOT HAVE A PROOF IN THE PROJECT OF THIS AS YET, PROBABLY IN M203

First isomorphism theorem

Let ϕ : $G \to H$ be a group homomorphism. Then $\frac{G}{\ker(\phi)} \cong \operatorname{Im}(\phi)$.

<u>Proof</u>

By the theorem above on the kernel of a group homomorphism, $ker(\phi)$ is a normal subgroup of

G. Then by the lemma above on cosets $\frac{G}{\ker(\phi)}$ is a group and there exists a homomorphism

 $\phi: G \to \frac{G}{\ker(\phi)}$. By the correspondence theorem above, there is a one-one correspondence ψ

between cosets of $\ker(\phi)$ and $\operatorname{Im}(\phi)$. We have

$$\psi \begin{cases} \frac{G}{\ker(\phi)} \to \operatorname{Im}(\phi) \\ g \ker(\phi) \mapsto \phi(g) \end{cases}$$

Furthermore, ψ is a homomorphism, since

 $\psi(g_1 \operatorname{ker}(\phi))\psi(g_2 \operatorname{ker}(\phi)) = \phi(g_1)\phi(g_2) = \phi(g_1g_2) = \psi(g_1g_2 \operatorname{ker}(\phi))$ Hence ψ is an isomorphism and $\frac{G}{\operatorname{ker}(\phi)} \cong \operatorname{Im}(\phi)$.

Remark

The first isomorphism theorem establishes an association between normal subgroups, homomorphisms and quotient groups. Any normal subgrous is the kernel of a natural homomorphism. The image of this homomorphism is isomorphic to the quotient group.

Examples

1.	the dihedral group	D_8	we have the fe	ollowing permutations
----	--------------------	-------	----------------	-----------------------

permutation		Symmetry of the square		sgn
е	Ι	identity	even	+1
(1,2)(3,4)	Q_1	horizontal reflection	odd	-1
(1,4)(2,3)	Q_2	vertical reflection	odd	-1
(2,4)	Q_3	diagonal reflection	even	+1
(1,3)	Q_4	diagonal reflection	even	+1
(1,2,3,4)	$R_{\pi/2}$	rotation about the centre by $\frac{\pi}{2}$	odd	-1
(1,3)(2,4)	R_{π}	rotation about the centre by π	even	+1
(4,3,2,1)	$R_{3\pi/2}$	rotation about the centre by $\frac{\pi}{2}$	odd	-1

The map

$$\operatorname{sgn} \begin{cases} S_n \to S \\ f \mapsto \operatorname{sgn}(f) \end{cases}$$

is a group homomorphism. The kernel is the set of even permutations $\ker \left(\phi \right) = \left\{ f \in D_8 \left| \text{sgn} \left(f \right) = +1 \right\} = \left\{ I, Q_1. Q_2, R_\pi \right\}$

This partitions D_8 as follows.

	Ι	Q_1	Q_2	R _π	$R_{\pi_{2}}$	$R_{\frac{3}{2}\pi}$	Q 3	Q 4
Ι	Ι	Q_1	Q_2	Rπ	R_{π}_{2}	$R_{3\pi}_{2}$	<i>Q</i> ₃	Q 4
Q_1	Q_1	Ι	R_{π}	Q_2	Q 4	Q_3	$R_{3\pi}_{2}$	$R_{\pi_{2}}$
Q_2	Q_2	R_{π}	Ι	Q_1	Q_3	Q 4	$R_{\pi_{2}}$	$R_{3\pi}_{2}$
R_{π}	R_{π}	Q_2	Q_1	Ι	$R_{3\pi}_{2}$	R_{π}_{2}	<i>Q</i> ₄	Q_3
$R_{\pi_{2}}$	$R_{\pi_{2}}$	<i>Q</i> ₃	Q 4	$R_{3\pi}_{2}$	R_{π}	Ι	Q 2	Q_1
$R_{3\pi}_{2}$	$R_{3\pi}_{2}$	Q 4	Q_3	$R_{\pi_{2}}$	Ι	R _π	Q_1	Q_2
Q 3	<i>Q</i> ₃	$R_{3\pi}_{2}$	$R_{\pi_{2}}$	Q 4	Q_1	Q_2	Ι	R_{π}
Q 4	Q 4	$R_{\pi_{2}}$	$R_{3\pi}_{2}$	<i>Q</i> ₃	Q_2	Q_1	R_{π}	Ι

The cosets of sgn are

$$K = \ker(\phi) = \{I, Q_1, Q_2, R_{\pi}\}$$
$$K \cdot \frac{\pi}{2} = \left\{R_{\frac{\pi}{2}}, R_{\frac{3\pi}{2}}, Q_3, Q_4\right\}$$

The image set is $\{+1, -1\}$, and sgn maps

$$K \to +1$$
 $K \cdot \frac{\pi}{2} \to -1$

The quotient group has the following combination table and corresponding image.

$$K$$
 $K \frac{\pi}{2}$
 +1
 -1

 K
 K
 $K \frac{\pi}{2}$
 +1
 +1
 -1

 $K \frac{\pi}{2}$
 $K \frac{\pi}{2}$
 K
 -1
 -1
 +1

This illustrates the idea that the groups $\frac{G}{K}$ and Im(sgn) are isomorphic.

2. The symmetry group S_4 comprises all symmetries of the tetrahedron. In the tetrahedron there are six edges, which come in three pairs of opposites. We may denote these opposite edges by the labels *A*, *B* and *C*. Numbering the vertices of the tetrahedron as follows

Then the edge pairs are

A edges {1,2} and {3,4}

- *B* edges $\{1,3\}$ and $\{2,4\}$
- C edges {1,4} and {2,3}

Let g = (1,2,3), then g maps the edge $\{1,2\}$ to $\{2,3\}$ and the edge $\{3,4\}$ to $\{1,4\}$. That is, g maps the edge A to the edge C. Likewise (1,2,3) maps C to B, and B to A. Hence the image of g = (1,2,3) is the cycle (ABC).

Let ϕ denote the map from S_4 that arises from taking an element of $g \in S_4$ and finding the cycle to which g maps the edge pairs A, B and C.

$$\phi \begin{cases} S_4 \to S_3 \\ g \mapsto A \text{ cycle of the symbols } A, B, C \end{cases}$$

We have just shown that

 $\phi((1,2,3)) = (ABC).$

It can be shown that $\phi\,$ is a group homomorphism with

 $\ker(\phi) = \mathbf{V} = \{I, (12)(34), (13)(24), (14)(23)\}$

The following table gives the cosets of ${\bf V}$ and the images of the 24 permutations of S_4 under ϕ .

coset	g	f(g)
V	1	Ι
	(12)(34)	
	(13)(24)	
	(14)(23)	
V(123)	(123)	(A CB)
	(12)(34)(123) = (134)	
	(13)(24)(123) = (243)	
	(14)(23)(123) = (142)	
V(132)	(132)	(ABC)
	(12)(34)(132) = (234)	
	(13)(24)(132) = (124)	
	(14)(23)(132) = (143)	
V(12)	(12)	(BC)
	(12)(34)(12) = (34)	
	(13)(24)(12) = (1324)	
	(14)(23)(12) = (1423)	
V(13)	(13)	(AC)
	(12)(34)(13) = (1234)	
	(13)(24)(13) = (24)	
	(14)(23)(13) = (1423)	
V(14)	(14)	(AB)
	(12)(34)(14) = (1243)	
	(13)(24)(14) = (1342)	
	(14)(23)(14) = (23)	

The quotient group $\frac{S_4}{\mathbf{V}}$ is isomorphic to S_3 .

8

	Ι	(ABC)	(ACB)	(BC)	(AB)	(AC)
Ι	Ι	(ABC)	(A CB)	(BC)	(AB)	(AC)
(ABC)	(ABC)	(A CB)	Ι	(1,3)	(BC)	(AB)
(ACB)	(A CB)	Ι	(ABC)	(AB)	(AC)	(BC)
(BC)	(BC)	(AB)	(AC)	Ι	(ABC)	(ACB)
(AB)	(AB)	(AC)	(BC)	(ACB)	Ι	(ABC)
(AC)	(AC)	(BC)	(AB)	(ABC)	(ACB)	Ι
	Ι	V(132)	V(123)	V (12)	V(14)	V(13)
I	I I	V(132) V(132)	V(123) V(123)	V (12) V (12)	V(14) V(14)	V(13) V(13)
<i>I</i> V (132)	<i>I</i> <i>I</i> V (132)	V(132) V(132) (<i>ACB</i>)	V(123) V(123) I	V(12) V(12) V(1,3)	V(14) V(14) V(12)	V(13) V(13) V(14)
<i>I</i> V (132) V (123)	<i>I</i> <i>V</i> (132) <i>V</i> (123)	V(132) V(132) (ACB) I	V(123) V(123) I V(132)	V(12) V(12) V(1,3) V(14)	V(14) V(14) V(12) V(13)	V(13) V(13) V(14) V(12)
<i>I</i> V(132) V(123) V(12)	<i>I</i> <i>V</i> (132) <i>V</i> (123) <i>V</i> (12)	V(132) V(132) (ACB) I V(14)	V(123) V(123) I V(132) V(13)	V(12) V(12) V(1,3) V(14)	V(14) V(14) V(12) V(13) V(132)	V(13) V(13) V(14) V(12) V(123)
<i>I</i> V(132) V(123) V(12) V(14)	<i>I</i> <i>V</i> (132) <i>V</i> (123) <i>V</i> (12) <i>V</i> (14)	V(132) V(132) (ACB) I V(14) V(13)	V(123) V(123) I V(132) V(13) V(12)	V (12) V (12) V (1,3) V (14) I V (123)	V(14) V(14) V(12) V(13) V(132) I	V(13) V(13) V(14) V(12) V(123) V(132)

These combination tables show the correspondence (isomorphism) between $\frac{S_4}{V}$ and S_3 .

