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First Isomorphism Theorem for Groups 
 

 

 

Quotient groups and the first isomorphism theorem 
 
 

Lemma, coset group 

Let N be a normal subgroup of a group, G.  Let multiplication of cosets of N be defined by 

     1 2 1 2Ng Ng N g g  

Let the set of cosets of N in G be denoted by 
G

N
; Then 

1. 
G

N
 with the operation of multiplication of cosets is a group. 

2. There exists a homomorphism 

    :  such that ker
G

G N
N

 

G

N
 is called the quotient group or factor group of G by N.   

Proof 

1. We must first show that multiplication of cosets is well defined. 

 Let   1 1 2 2 and Ng Ng Ng Ng  

 We must show  1 2 1 2Ng g Ng g . 

 Now  

   

    

  

1 1 1 1 1

2 2 2 2 2 1 2

1 2 1 1 2 2

 where ,

Ng Ng g n g

Ng Ng g n g n n N

g g n g n g

 

Since N  G then       1 1
1 2 1 1 2 1 3 1 2 3 1g n g N g n g n N g n n g  

Hence       1 2 1 3 1 2 1 2 1 2 1 3 since g g n n g g g g Ng g n n N .  Hence  1 2 1 2Ng g Ng g  as required. 

2. Now we must show that 
G

N
 with the operation of multiplication of cosets is a group.  

This requires verification of the group axioms. 

 2.1 Closure 
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  Let 1 2 and 
G

Ng Ng
N

, then      1 2 1 2

G
Ng Ng Ng g

N
. 

 2.2 Identity 

  The identity in 
G

N
 is N, for          1 1N Ng N Ng N g Ng  

 2.3 Inverses 

  The inverse of  Ng  in 
G

N
 is  1Ng  for      1 1Ng Ng Ngg N  

 2.4 Associativity 

  

          

  
  

   

      











1 2 3 1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

Ng Ng Ng Ng g Ng

N g g g

N g g g

Ng Ng g

Ng Ng Ng

 

3. Let  

 
 

 

G
G

N
g gN

 

 Then   is a homomorphism since 

              1 2 1 2 1 2 1 2g g Ng g Ng Ng g g  

 Then 

 

    
 

 

   

  

  



ker g G g N

g G Ng N

g G g N

N

 

 

Definition, natural homomorphism 

The homomorphism 


 

 

G
G

N
g gN

 

is called the natural homomorphism from G onto 
G

N
. 

 

Result, quotient groups 

1. Quotient groups of cyclic groups are cyclic. 
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2. Quotient groups of Abelian groups are Abelian. 

Proof 

This is a direct consequence of the result that homomorphisms map cyclic groups to cyclic 

groups, and Abelian groups to Abelian groups.  Though this should be proven somewhere. 

 

Theorem, kernel 

The kernel of a group homomorphism  :G H  is a normal subgroup of G. 

I DO NOT HAVE A PROOF IN THE PROJECT OF THIS AS YET, PROBABLY IN M203 

 

Theorem, correspondence 

Let  :G H  be a group homomorphism.  Then there exists a one-one correspondence between 

cosets of  ker  and elements of  Im . 

I DO NOT HAVE A PROOF IN THE PROJECT OF THIS AS YET, PROBABLY IN M203 

 

First isomorphism theorem 

Let  :G H  be a group homomorphism.  Then 
   


 Im
ker

G
. 

Proof 

By the theorem above on the kernel of a group homomorphism,  ker  is a normal subgroup of 

G.  Then by the lemma above on cosets 
 ker

G
 is a group and there exists a homomorphism 

 



:

ker

G
G .  By the correspondence theorem above, there is a one-one correspondence   

between cosets of  ker  and  Im . We have 

   

   



 

 


 

Im
ker

ker

G

g g

 

Furthermore,   is a homomorphism, since 

                        1 2 1 2 1 2 1 2ker ker kerg g g g g g g g  

Hence   is an isomorphism and 
   


 Im
ker

G
. 

 

Remark 

The first isomorphism theorem establishes an association between normal subgroups, 

homomorphisms and quotient groups.  Any normal subgrous is the kernel of a natural 

homomorphism.  The image of this homomorphism is isomorphic to the quotient group. 
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Examples 

1. the dihedral group 8D  we have the following permutations 

 

   

   

 

 

  





1

2

3

4

2

   

identity even +1

1,2 3,4 horizontal reflection odd 1

1,4 2,3 vertical reflection odd 1

2,4 diagonal reflection even +1

1,3 diagonal reflection even +1

1,2,3,4 rotation abo

e I

Q

Q

Q

Q

R

permutation Symmetry of the square sgn

   

 













3
2

ut the centre by odd 12

1,3 2,4 rotation about the centre by even +1

4,3,2,1 rotation about the centre by odd 12

R

R

 

The map 

 



 

sgn
sgn

nS S

f f
 

is a group homomorphism.  The kernel is the set of even permutations 

           8 1 2ker sgn 1 , . ,f D f I Q Q R  

This partitions 8D  as follows. 

 

  

  

  

  

  

  

   

 







1 2 3 3 4

2 2

1 2 3 3 4

2 2

1 1 2 4 3 3

2 2

2 2 1 3 4 3

2 2

2 1 3 4 3
2 2

3 4 3 2 1

2 2 2

3 3 4 3 1 2
2 2 2

3 3 3 4 1 2

2 2

4 4 3 3 2 1

2 2

I Q Q R R R Q Q

I I Q Q R R R Q Q

Q Q I R Q Q Q R R

Q Q R I Q Q Q R R

R R Q Q I R R Q Q

R R Q Q R R I Q Q

R R Q Q R I R Q Q

Q Q R R Q Q Q I R

Q Q R R Q Q Q R I
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The cosets of sgn are 

   

 






 

     
  

1 2

3 4

2 2

ker , . ,

, , ,
2

K I Q Q R

K R R Q Q
 

The image set is   1, 1 , and sgn maps 


    1 1

2
K K  

The quotient group has the following combination table and corresponding image. 

2

2

2 2

K K

K K K

K K K







+1

+1 +1

+1

1

1

11
 

This illustrates the idea that the groups   and Im sgn
G

K
 are isomorphic. 

2. The symmetry group 4S  comprises all symmetries of the tetrahedron.  In the tetrahedron 

there are six edges, which come in three pairs of opposites.  We may denote these 

opposite edges by the labels A, B and C.  Numbering the vertices of the tetrahedron as 

follows 

 

2
3

1

4  

 

Then the edge pairs are 

A  edges    1,2  and 3,4  

B edges    1,3  and 2,4  

C edges    1,4  and 2,3  
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Let   1,2,3g , then g maps the edge  1,2  to  2,3 and the edge    3,4  to 1,4 .  That is, g 

maps the edge A to the edge C.  Likewise  1,2,3  maps C to B, and B to A.  Hence the 

image of   1,2,3g  is the cycle  ABC . 

Let   denote the map from 4S  that arises from taking an element of  4g S  and finding 

the cycle to which g maps the edge pairs A, B and C. 





 

4 3

A cycle of the symbols , ,

S S

g A B C
 

We have just shown that  

     1,2,3 ABC . 

It can be shown that   is a group homomorphism with 

                ker , 12 34 , 13 24 , 14 23IV  

The following table gives the cosets of V and the images of the 24 permutations of 4S  

under  . 
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( )

( )( )

( )( )

( )( )

( ) ( ) ( )

( )( )( ) ( )

( )( )( ) ( )

( )( )( ) ( )

( ) ( ) ( )

( )( )( ) ( )

( )( )( ) ( )

( )( )( ) ( )

( ) ( ) ( )

( )( )( ) ( )

( )( )( ) ( )

( )( )( ) ( )

( ) ( ) ( )

( )( )( ) ( )

( )( )( ) ( )

( )( )( ) ( )

( ) ( ) ( )

( )( )( )

f

=

=

=

=

=

=

=

=

=

=

=

=

=

coset

1

12 34

13 24

14 23

123 123

12 34 123 134

13 24 123 243

14 23 123 142

132 132

12 34 132 234

13 24 132 124

14 23 132 143

12 12

12 34 12 34

13 24 12 1324

14 23 12 1423

13 13

12 34 13 1234

13 24 13 24

14 23 13 1423

14 14

12 34 14 1

g g

I

ACB

ABC

BC

AC

AB

V

V

V

V

V

V

( )

( )( )( ) ( )

( )( )( ) ( )

=

=

243

13 24 14 1342

14 23 14 23
 

The quotient group 4S

V
 is isomorphic to 3S . 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1,3

I ABC ACB BC AB AC

I I ABC ACB BC AB AC

ABC ABC ACB I BC AB

ACB ACB I ABC AB AC BC

BC BC AB AC I ABC ACB

AB AB AC BC ACB I ABC

AC AC BC AB ABC ACB I

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

132 123 12 14 13

132 123 12 14 13

132 132 1,3 12 14

123 123 132 14 13 12

12 12 14 13 132 123

14 14 13 12 123 132

13 13 12 14 132 123

I

I I

ACB I

I

I

I

I

V V V V V

V V V V V

V V V V V

V V V V V V

V V V V V V

V V V V V V

V V V V V V

 

 

These combination tables show the correspondence (isomorphism) between 4S

V
and 3S . 

 

 

 

 

 


