First Isomorphism Theorem for Groups

Quotient groups and the first isomorphism theorem

Lemma, coset group

Let N be a normal subgroup of a group, G. Let multiplication of cosets of N be defined by
$\left(N g_{1}\right)\left(N g_{2}\right)=N\left(g_{1} g_{2}\right)$
Let the set of cosets of N in G be denoted by $\frac{G}{N}$; Then

1. $\frac{G}{N}$ with the operation of multiplication of cosets is a group.
2. There exists a homomorphism
$\phi: G \rightarrow \frac{G}{N}$ such that $\operatorname{ker}(\phi)=N$
$\frac{G}{N}$ is called the quotient group or factor group of G by N.
Proof
3. We must first show that multiplication of cosets is well defined.

Let $N g_{1}=N g_{1}{ }^{\prime}$ and $N g_{2}=N g_{2}{ }^{\prime}$
We must show $N g_{1} g_{2}=N g_{1}{ }^{\prime} g_{2}{ }^{\prime}$.
Now

$$
\begin{aligned}
& N g_{1}=N g_{1}^{\prime} \Rightarrow g_{1}^{\prime}=n_{1} g_{1} \\
& N g_{2}=N g_{2}^{\prime} \Rightarrow g_{2}^{\prime}=n_{2} g_{2} \text { where } n_{1}, n_{2} \in N \\
& g_{1}^{\prime} g_{2}^{\prime}=n_{1} g_{1} n_{2} g_{2}
\end{aligned}
$$

Since $N \triangleleft G$ then $g_{1} n_{2} g_{1}^{-1} \in N \Rightarrow g_{1} n_{2} g_{1}^{-1}=n_{3} \in N \Rightarrow g_{1} n_{2}=n_{3} g_{1}$
Hence $g_{1}^{\prime} g_{2}^{\prime}=n_{1} n_{3} g_{1} g_{2} \Rightarrow g_{1}^{\prime} g_{2}^{\prime} \in N g_{1} g_{2}$ since $n_{1} n_{3} \in N$. Hence $N g_{1} g_{2}=N g_{1}^{\prime} g_{2}^{\prime}$ as required.
2. Now we must show that $\frac{G}{N}$ with the operation of multiplication of cosets is a group.

This requires verification of the group axioms.
2.1 Closure

Let $N g_{1}$ and $N g_{2} \in \frac{G}{N}$, then $\left(N g_{1}\right)\left(N g_{2}\right)=N g_{1} g_{2} \in \frac{G}{N}$.
2.2 Identity

The identity in $\frac{G}{N}$ is N, for $(N)(N g)=(N 1)(N g)=N 1 g=N g$
2.3 Inverses

The inverse of $(N g)$ in $\frac{G}{N}$ is $\left(N g^{-1}\right)$ for $(N g)\left(N g^{-1}\right)=N g g^{-1}=N$
2.4 Associativity

$$
\begin{aligned}
\left(\left(N g_{1}\right)\left(N g_{2}\right)\right)\left(N g_{3}\right) & =\left(N g_{1} g_{2}\right)\left(N g_{3}\right) \\
& =N\left(\left(g_{1} g_{2}\right) g_{3}\right) \\
& =N\left(g_{1}\left(g_{2} g_{3}\right)\right) \\
& =\left(N g_{1}\right)\left(N g_{2} g_{3}\right) \\
& =\left(N g_{1}\right)\left(\left(N g_{2}\right)\left(N g_{3}\right)\right)
\end{aligned}
$$

3. Let
$\phi\left\{\begin{array}{l}G \rightarrow \frac{G}{N} \\ g \mapsto g N\end{array}\right.$
Then ϕ is a homomorphism since

$$
\phi\left(g_{1} g_{2}\right)=N g_{1} g_{2}=\left(N g_{1}\right)\left(N g_{2}\right)=\phi\left(g_{1}\right) \phi\left(g_{2}\right)
$$

Then

$$
\begin{aligned}
\operatorname{ker}(\phi) & =\{g \in G \mid \phi(g)=N\} \\
& =\{g \in G \mid N g=N\} \\
& =\{g \in G \mid g \in N\} \\
& =N
\end{aligned}
$$

Definition, natural homomorphism

The homomorphism
$\phi\left\{\begin{array}{l}G \rightarrow \frac{G}{N} \\ g \mapsto g N\end{array}\right.$
is called the natural homomorphism from G onto $\frac{G}{N}$.

Result, quotient groups

1. Quotient groups of cyclic groups are cyclic.
2. Quotient groups of Abelian groups are Abelian.

Proof
This is a direct consequence of the result that homomorphisms map cyclic groups to cyclic groups, and Abelian groups to Abelian groups. Though this should be proven somewhere.

Theorem, kernel

The kernel of a group homomorphism $\phi: G \rightarrow H$ is a normal subgroup of G.
I DO NOT HAVE A PROOF IN THE PROJECT OF THIS AS YET, PROBABLY IN M203

Theorem, correspondence
Let $\phi: G \rightarrow H$ be a group homomorphism. Then there exists a one-one correspondence between cosets of $\operatorname{ker}(\phi)$ and elements of $\operatorname{Im}(\phi)$.

I DO NOT HAVE A PROOF IN THE PROJECT OF THIS AS YET, PROBABLY IN M203

First isomorphism theorem
Let $\phi: G \rightarrow H$ be a group homomorphism. Then $\frac{G}{\operatorname{ker}(\phi)} \cong \operatorname{Im}(\phi)$.
Proof
By the theorem above on the kernel of a group homomorphism, $\operatorname{ker}(\phi)$ is a normal subgroup of G. Then by the lemma above on cosets $\frac{G}{\operatorname{ker}(\phi)}$ is a group and there exists a homomorphism
$\phi: G \rightarrow \frac{G}{\operatorname{ker}(\phi)}$. By the correspondence theorem above, there is a one-one correspondence ψ
between cosets of $\operatorname{ker}(\phi)$ and $\operatorname{Im}(\phi)$. We have
$\psi\left\{\begin{array}{l}\frac{G}{\operatorname{ker}(\phi)} \rightarrow \operatorname{Im}(\phi) \\ g \operatorname{ker}(\phi) \mapsto \phi(g)\end{array}\right.$
Furthermore, ψ is a homomorphism, since
$\psi\left(g_{1} \operatorname{ker}(\phi)\right) \psi\left(g_{2} \operatorname{ker}(\phi)\right)=\phi\left(g_{1}\right) \phi\left(g_{2}\right)=\phi\left(g_{1} g_{2}\right)=\psi\left(g_{1} g_{2} \operatorname{ker}(\phi)\right)$
Hence ψ is an isomorphism and $\frac{G}{\operatorname{ker}(\phi)} \cong \operatorname{Im}(\phi)$.

Remark

The first isomorphism theorem establishes an association between normal subgroups, homomorphisms and quotient groups. Any normal subgrous is the kernel of a natural homomorphism. The image of this homomorphism is isomorphic to the quotient group.

Examples

1. the dihedral group D_{8} we have the following permutations

permutation		Symmetry of the square		sgn
e	I	identity	even	+1
$(1,2)(3,4)$	Q_{1}	horizontal reflection	odd	-1
$(1,4)(2,3)$	Q_{2}	vertical reflection	odd	-1
$(2,4)$	Q_{3}	diagonal reflection	even	+1
$(1,3)$	Q_{4}	diagonal reflection	even	+1
$(1,2,3,4)$	$R_{\pi / 2}$	rotation about the centre by $\pi / 2$	odd	-1
$(1,3)(2,4)$	R_{π}	rotation about the centre by π	even	+1
$(4,3,2,1)$	$R_{3 \pi / 2}$	rotation about the centre by $\pi / 2$	odd	-1

The map
$\operatorname{sgn}\left\{\begin{array}{l}S_{n} \rightarrow S \\ f \mapsto \operatorname{sgn}(f)\end{array}\right.$
is a group homomorphism. The kernel is the set of even permutations
$\operatorname{ker}(\phi)=\left\{f \in D_{8} \mid \operatorname{sgn}(f)=+1\right\}=\left\{I, Q_{1} \cdot Q_{2}, R_{\pi}\right\}$
This partitions D_{8} as follows.

	I	Q_{1}	Q_{2}	R_{π}	R_{π}	$R_{3} \pi$	Q_{3}	Q_{4}
I	I	Q_{1}	Q_{2}	R_{π}	R_{π}	$R_{3 \pi}$	Q_{3}	Q_{4}
Q_{1}	Q_{1}	I	R_{π}	Q_{2}	Q_{4}	Q_{3}	$R_{3 \pi}$	R_{π}
Q_{2}	Q_{2}	R_{π}	I	Q_{1}	Q_{3}	Q_{4}	R_{π}	$\begin{gathered} R_{3 \pi} \\ 2 \end{gathered}$
R_{π}	R_{π}	Q_{2}	Q_{1}	I	$R_{3 \pi}$.-	R_{π}	Q_{4}	Q_{3}
R_{π}	R 2	Q_{3}	Q_{4}	$R_{\substack{3 \pi \\ 2}}$	R_{π}	I	Q_{2}	Q_{1}
$R_{3 \pi}$	$R_{3 \pi}$	Q_{4}	Q_{3}	$R_{\substack{2}}$	I	R_{π}	Q_{1}	Q_{2}
Q_{3}	Q_{3}	$R_{3 \pi}$	R_{π}	Q_{4}	Q_{1}	Q_{2}	I	R_{π}
Q_{4}	Q_{4}	R_{π}	$R_{3 \pi}$	Q_{3}	Q_{2}	Q_{1}	R_{π}	I

The cosets of sgn are

$$
\begin{aligned}
& K=\operatorname{ker}(\phi)=\left\{I, Q_{1} \cdot Q_{2}, R_{\pi}\right\} \\
& K \cdot \frac{\pi}{2}=\left\{R_{\frac{\pi}{2}}, R_{\frac{3 \pi}{2}}, Q_{3}, Q_{4}\right\}
\end{aligned}
$$

The image set is $\{+1,-1\}$, and sgn maps

$$
K \rightarrow+1 \quad K \cdot \frac{\pi}{2} \rightarrow-1
$$

The quotient group has the following combination table and corresponding image.

	+1	-1
+1	+1	-1
--1	-1	-1

This illustrates the idea that the groups $\frac{G}{K}$ and $\operatorname{Im}(\operatorname{sgn})$ are isomorphic.
2. The symmetry group S_{4} comprises all symmetries of the tetrahedron. In the tetrahedron there are six edges, which come in three pairs of opposites. We may denote these opposite edges by the labels A, B and C. Numbering the vertices of the tetrahedron as follows

Then the edge pairs are
$A \quad$ edges $\{1,2\}$ and $\{3,4\}$
$B \quad$ edges $\{1,3\}$ and $\{2,4\}$
C edges $\{1,4\}$ and $\{2,3\}$
© blacksacademy.net

Let $g=(1,2,3)$, then g maps the edge $\{1,2\}$ to $\{2,3\}$ and the edge $\{3,4\}$ to $\{1,4\}$. That is, g maps the edge A to the edge C. Likewise $(1,2,3)$ maps C to B, and B to A. Hence the image of $g=(1,2,3)$ is the cycle $(A B C)$.

Let ϕ denote the map from S_{4} that arises from taking an element of $g \in S_{4}$ and finding the cycle to which g maps the edge pairs A, B and C.
$\phi\left\{\begin{array}{l}S_{4} \rightarrow S_{3} \\ g \mapsto \text { A cycle of the symbols } A, B, C\end{array}\right.$
We have just shown that
$\phi((1,2,3))=(A B C)$.
It can be shown that ϕ is a group homomorphism with
$\operatorname{ker}(\phi)=\mathbf{V}=\{I,(12)(34),(13)(24),(14)(23)\}$
The following table gives the cosets of \mathbf{V} and the images of the 24 permutations of S_{4} under ϕ.

The quotient group $\frac{S_{4}}{\mathbf{V}}$ is isomorphic to S_{3}.

	I	($A B C$)	($A C B$)	(BC)	($A B$)	($A C$)
I	I	($A B C$)	($A C B$)	(BC)	($A B$)	($A C$)
($A B C$)	($A B C$)	($A C B$)	I	$(1,3)$	(BC)	($A B$)
$(A C B)$	($A C B$)	I	$(A B C)$	($A B$)	($A C$)	(BC)
(BC)	(BC)	($A B$)	($A C)$	I	($A B C$)	($A C B$)
($A B$)	($A B$)	($A C$)	(BC)	$(A C B)$	I	($A B C$)
($A C$)	($A C$)	(BC)	(AB)	($A B C$)	($A C B$)	I
	I	V (132)	V(123)	$\mathrm{V}(12)$	V(14)	V (13)
I	I	V (132)	V(123)	V (12)	V(14)	V (13)
$\mathbf{V}(132)$	V (132)	$(A C B)$	I	$\mathrm{V}(1,3)$	V(12)	V (14)
V(123)	V (123)	I	V(132)	$\mathrm{V}(14)$	V(13)	V (12)
V (12)	V (12)	V (14)	V(13)	I	V (132)	V (123)
\mathbf{V} (14)	V (14)	V(13)	V(12)	V (123)	I	V (132)
V(13)	V (13)	V(12)	V(14)	V (132)	V(123)	I

These combination tables show the correspondence (isomorphism) between $\frac{S_{4}}{\mathbf{V}}$ and S_{3}.

