Proofs of first-order, constant-coefficient linear recurrence relations

First-order, constant-coefficient, linear and homogeneous recurrence relations

These are of the form
$u_{r+1}=a u_{r}$
This is the simplest form of recurrence relation, and its solution is
$u_{n}=a^{n} u_{0}$
where u_{0} is the initial value.

Example
A recurrence relation is given by

$$
u_{r+1}=3 u_{r}
$$

If the initial value is 6 , find u_{7}

Solution

$$
u_{n}=a^{n} u_{0}
$$

Here $a=3, u_{0}=6$, hence,

$$
u_{n}=6 \times 3^{7}=13122
$$

Proof of the formula

To prove:
If $u_{r+1}=a u_{r}$ then $u_{n}=a^{n} u_{0}$
where u_{0} is the initial value.

Proof by Mathematical Induction

First step, for $r=0$
© blacksacademy.net

Then LHS $=u_{0}=u_{0}=$ RHS so the first step holds
Induction step
The induction hypothesis is
$u_{k}=a^{k} u_{0}$
To prove
$u_{k+1}=a^{k+1} u_{0}$
Then
$u_{k+1}=a u_{k}$
which is the recurrence relation, by substituting for u_{k} from the induction step, we obtain
$u_{k+1}=a\left(a^{k} u_{0}\right)=a^{k+1} u_{0}$
which proves the induction step.
Hence, by mathematical induction the result holds for all n, and
$u_{n}=a^{n} u_{0}$
Even more generally, the first-order, linear, constant-coefficient, homogeneous recurrence relation
$u_{r+1}=a u_{r}$
has general solution
$u_{n}=B \times a^{n}$
where B is a constant
The value of the constant for a particular solution is found by substituting a particular value for which u_{n} is known.

First-order, constant-coefficient, linear and inhomogeneous recurrence relations
These have general form
© blacksacademy.net
$u_{r+1}=a u_{r}+k$
and has general solution
$u_{n}=B a^{n}-\frac{k}{a-1} \quad$ if $a \neq 1$
and
$u_{n}=A+n k \quad$ if $a=1$

Example

Find the general solution to the recurrence relation

$$
u_{r+1}=3 u_{r}-2
$$

and the particular solution if $u_{0}=2$.
Solution
The general solution is

$$
u_{n}=B a^{n}-\frac{k}{a-1}
$$

where $a=3$ and $k=-2$
hence,
$u_{n}=B 3^{n}-\frac{(-2)}{3-1}$
Therefore,

$$
u_{n}=B 3^{n}+1
$$

To find the particular solution we substitute, $u_{0}=2, n=0$ to obtain

$$
\begin{aligned}
& 2=B 3^{0}+1 \\
& B=1 .
\end{aligned}
$$

Hence,
$u_{n}=3^{n}+1$
is the particular solution
© blacksacademy.net

Proof of the solution to first-order, linear, constant coefficient, inhomogeneous recurrence relations

Let $u_{r+1}=a u_{r}+k$
then,
$u_{1}=a u_{0}+k$
$u_{2}=a u_{1}+k=a\left(a u_{0}+k\right)+k=a^{2} u_{0}+a k+k$
$u_{3}=a u_{2}+k=a\left(a^{2} u_{0}+a k+k\right)=a^{3} u_{0}+a^{2} k+a k+k=a^{3} u_{0}+k\left(a^{2}+a+1\right)$
Hence
$u_{n}=a^{n} u_{0}+k\left(a^{n-1}+a^{n-2}+\ldots+a+1\right)$
The expression inside the bracket is the sum of a geometric series
$1, a, a^{2}, \ldots, a^{n-2}, a^{n-1}$
with first term 1, ratio a and n terms.
Provided $a \neq 1$ then
$a^{n-1}+a^{n-2}+\ldots+a+1=\frac{a^{n}-1}{a-1}$
Hence, if $a \neq 1$, the solution is
$u_{n}=a^{n} u_{0}+k\left(\frac{a^{n}-1}{a-1}\right)$
Expansion of the bracket gives
$u_{n}=a^{n} u_{0}+\frac{k a^{n}-k}{a-1}$
Collecting terms in a^{n}
$u_{n}=a^{n}\left(u_{0}+\frac{k}{a-1}\right)-\frac{k}{a-1}$
Hence,
$u_{n}=B a^{n}-\frac{k}{a-1}$
where B is a constant, as required.
On the other hand, suppose $a=1$, then as before
$u_{n}=a^{n} u_{0}+k\left(a^{n-1}+a^{n-2}+\ldots+a+1\right)$
but $a=1$, hence
$u_{n}=1^{n} u_{0}+k(1+1+\ldots+1)$
where there are $n 1 \mathrm{~s}$; that is
$u_{n}=u_{0}+n k$
or equivalently,
$u_{n}=A+n k$
where A is a constant.
© blacksacademy.net

