Further graph sketching

In this unit we are concerned with asymptotes of functions of the form $y=\frac{1}{(x-\alpha)}$. Graphs of this kind exhibit singularities; that is points where the function is not defined, and the curve is asymptotic to the vertical line $x=\alpha$. We are also concerned with sketching graphs of the form $y=|f(x)|$ and $y^{2}=f(x)$. In both these cases you start by sketching the graph of $y=f(x)$; from that graph the other graphs may be deduced.

Singularities

The function $f(x)=\frac{1}{(x-\alpha)}$ cannot have a value at $x=\alpha$ since that would entail that the denominator became a zero. When $x=\alpha$, then $f(x)=\frac{1}{(x-\alpha)}=\frac{1}{(\alpha-\alpha)}=\frac{1}{0}$. It is not permitted to divide by zero, hence $f(x)$ cannot have a value at $x=\alpha$ and is undefined there. We call such points singularities. Around a singularity the graph of $y=f(x)=\frac{1}{(x-\alpha)}$ becomes asymptotic a vertical line $x=\alpha$. To determine which side of the x-axis the graph approaches the vertical asymptote, you test points around $x=\alpha$.

Near an asymptote as $x \rightarrow \alpha$ from below α, then does $f(x) \rightarrow+\infty$ or does $f(x) \rightarrow-\infty$? To find out test points just below $x=\alpha$

Near an asymptote as $x \rightarrow \alpha$ from above α, then does $f(x) \rightarrow+\infty$ or does $f(x) \rightarrow-\infty$? To find out test points just above $x=\alpha$

The form $y=|f(x)|$

The graph of $y=|f(x)|$ is identical to the graph of $y=f(x)$, except that any part of the graph of $y=f(x)$ that lies below the x-axis is reflected to lie above it. This clearly follows from the definition of the modulus.
$y=|f(x)|=f(x)$ if $y=f(x)>0$
$y=|f(x)|=-f(x)$ if $y=f(x)<0$
When the function takes the form $y^{2}=f(x)$ then you begin by sketching the form $y=f(x)$. Then $y^{2}=f(x)$ exhibits symmetry about the x-axis.

The form $y^{2}=f(x)$
This exhibits symmetry about the x-axis. Since $\sqrt{y^{2}}= \pm y$, for every value of y that lies about the x-axis, there is a negative value below it. That is to determine the rough shape of this graph, note that if $|y|<1$ then $\left|y^{2}\right|<|y|$, and if $|y|>1$ then $\left|y^{2}\right|>|y|$

Example

The sketching of these curves is best illustrated by example.

Question

Make sketches of the graphs corresponding to each of the following functions
(a) $y=\frac{1}{x^{2}-a^{2}}$
(b) $y=\left|\frac{1}{x^{2}-a^{2}}\right|$
(c) $y^{2}=\frac{1}{x^{2}-a^{2}}$
where a is a positive constant. State the equation for each case of any asymptote(s) and the coordinates of any stationary points.

Solution

(a) We begin by skeching the graph of

$$
\begin{aligned}
& y=f(x)=\frac{1}{x^{2}-a^{2}}=\left(x^{2}-a^{2}\right)^{-1} \\
& \frac{d y}{d x}=-\left(x^{2}-a^{2}\right)^{-2} \times 2 x=-\frac{2 x}{\left(x^{2}-a^{2}\right)^{2}}
\end{aligned}
$$

For turning points $\frac{d y}{d x}=0$
Hence
$-\frac{2 x}{\left(x^{2}-a^{2}\right)^{2}}=0$
$x=0$
When $x=0$ then $y=-\frac{1}{a^{2}}$
We need to test for the character of the stationary point.
Finding the second derivative could be tedious, so therefore we check what
happens to $\frac{d y}{d x}$ around the point $x=0$
When $x<0$, for example, when $x=-\frac{a}{2}$
$\frac{d y}{d x}=-\frac{2 x}{\left(\left(\frac{-a}{2}\right)^{2}-a^{2}\right)^{2}}<0$
When $x>0$, for example, when $x=\frac{a}{2}$
$\frac{d y}{d x}=-\frac{2 x}{\left(\left(\frac{a}{2}\right)^{2}-a^{2}\right)^{2}}>0$
So the point $\left(0,-\frac{1}{a^{2}}\right)$ is a max
We now need to find out about the asymptotes of this function..
When $x=a^{2}$ we have a singularity; that is, there are singularities at
$x= \pm a$
Thus, at these points there will be asymptotes which are parallel to the y-axis, with equations
$x=-a$
and
$x=a$
respectively.
As $x \rightarrow-a$ from the $x=0$ side $y \rightarrow-\infty$ because $\left(0,-\frac{1}{a^{2}}\right)$ is a max, and there are no other turning points in the region. Similarly, $x \rightarrow+a$ from the $x=0$ side then $y \rightarrow-\infty$

As $x \rightarrow-a$ from the $x<-a$ side, the demoninator of $y=\frac{1}{x^{2}-a^{2}}$ is large and positive.

Hence as $x \rightarrow-a$ from the $x<-a$ side $y \rightarrow+\infty$.
Similarly, as $x \rightarrow a$ from the $x>a$ side $y \rightarrow+\infty$

As $x \rightarrow+\infty$, the demoninator of $y=\frac{1}{x^{2}-a^{2}}$ becomes very large, hence
$y=\frac{1}{x^{2}-a^{2}}$ becomes very small; that is as $x \rightarrow+\infty, y \rightarrow 0$
Similarly, $x \rightarrow-\infty, y \rightarrow 0$
In both cases the equation of the asymptote is
$y=0$
We now have everything we need in order to sketch the graph.

(b) $y=\left|\frac{1}{x^{2}-a^{2}}\right|$

This is derived from the graph of $y=\frac{1}{x^{2}-a^{2}}$ by reflecting every part of $y=\frac{1}{x^{2}-a^{2}}$ that lies below the x-axis, leaving the part that lies above the x-axis unchanged.

The negative part of

$$
y=\begin{gathered}
1 \\
x^{2}-a^{2}
\end{gathered}
$$

(c) $y^{2}=\frac{1}{x^{2}-a^{2}}$

This exhibits symmetry about the x-axis. Since $\sqrt{y^{2}}= \pm y$, for every value of y that lies about the x-axis, there is a negative value below it. That is

$$
y= \pm \sqrt{\frac{1}{x^{2}-a^{2}}}
$$

To determine the rough shape of this graph, note that if $|x|<1$ then $\left|\frac{1}{x}\right|<\left|\frac{1}{x^{2}}\right|$, and if $|x|>1$ then $\left|\frac{1}{x}\right|>\left|\frac{1}{x^{2}}\right|$. Hence $\left|\frac{1}{x}\right|$ lies below $\left|\frac{1}{x^{2}}\right|$ if $|x|<1$, and above it if $|x|>1$.

This means that $y^{2}=\frac{1}{x^{2}-a^{2}}$ lies below $y=\frac{1}{x^{2}-a^{2}}$ if $x^{2}-a^{2}>1$, which is to say, it will lie below $y=\frac{1}{x^{2}-a^{2}}$ if $|x|>\sqrt{1+a^{2}}$. $y^{2}=\frac{1}{x^{2}-a^{2}}$ lies above $y=\frac{1}{x^{2}-a^{2}}$ if $x^{2}-a^{2}<1$, which is to say, it will lie above $y=\frac{1}{x^{2}-a^{2}}$ if $|x|<\sqrt{1+a^{2}}$.

The graph of $y^{2}=\frac{1}{x^{2}-a^{2}}$ does not exist if $\frac{1}{x^{2}-a^{2}}<0$ since there is no square root of a negative number. Hence the part of $y=\frac{1}{x^{2}-a^{2}}$ that lies below the x axis does not correspond to any part of $y^{2}=\frac{1}{x^{2}-a^{2}}$, and must be "deleted". The graph of $y^{2}=\frac{1}{x^{2}-a^{2}}$ may now be sketched.

The dotted lines show the graph of

$$
y=\begin{gathered}
1 \\
x^{2}-a^{2}
\end{gathered}
$$

