The gradient of a scalar field

Scalar fields

Consider a two- dimensional scalar field $f=f(x, y)$. We will define a vector field called the gradient of the scalar field f by,
$\operatorname{grad} f=\frac{\partial f}{\partial x} \underline{\mathbf{i}}+\frac{\partial f}{\partial y} \underline{\mathbf{j}}=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$

Example (1)

If $\phi=\ln (x+3 y)$ find $\operatorname{grad} \phi$. Evaluate grad ϕ at $(1,1)$
Solution

$$
\begin{aligned}
\operatorname{grad} \phi & =\frac{\partial}{\partial x} \ln (x+3 y) \underline{\mathbf{i}}+\frac{\partial}{\partial y} \ln (x+3 y) \underline{\mathbf{j}} \\
& =\left(\frac{1}{x+3 y}\right) \underline{\mathbf{i}}+\left(\frac{3}{x+3 y}\right) \underline{\mathbf{j}} \\
\operatorname{grad} \phi & \left.\right|_{(1,1)}=\frac{1}{4} \mathbf{i}+\frac{3}{4} \underline{\mathbf{j}}
\end{aligned}
$$

In three dimensions a scalar field is $f=f(x, y, z)$.

Example (2)

A three dimensional scalar field

The gravitational potential at a point (x, y, z) of a gravitational field is given by
$U(x, y, z)=\frac{c}{\sqrt{x^{2}+y^{2}+z^{2}}}$
where c is a constant. For example, the gravitational field surrounding the sun

The gravitational potential is inversely proportional to the distance of the point from the centre of the sun.

Find grad U and show that this points in the direction of the centre of the gravitational field.

Solution

$$
\begin{aligned}
& U=\frac{c}{\sqrt{x^{2}+y^{2}+z^{2}}}=c\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}} \\
& \frac{\partial U}{\partial x}=-\frac{c}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} \times 2 x=c \frac{-x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \\
& \frac{\partial U}{\partial y}=c \frac{-y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \\
& \begin{aligned}
& \frac{\partial U}{\partial z}=c \frac{-z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \\
& \therefore \operatorname{grad} U=c\left(\frac{-x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \frac{-y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \frac{c}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right) \\
& \quad=-\frac{c}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}(x, y, z)
\end{aligned}
\end{aligned}
$$

So grad U points in the direction $-(x, y, z)$. That is the direction $-\mathbf{i}-\mathbf{j}-\mathbf{k}$ Hence it points towards the centre of the gravitational field.

The direction of grad \boldsymbol{f}

We will now show that the direction of grad f at a point is perpendicular to contour curve passing through that point - that is, it points in the direction of the normal to that contour.

Proof
We have $f(x, y)=k$ as the equation of a contour curve.
© blacksacademy.net

Let $\underline{\mathbf{r}}=(x(t), y(t))$ be a parameterization of this contour curve.
Then a vector tangent to this contour curve will be $\frac{d \underline{\mathbf{r}}}{d t}=\frac{d x}{d t} \underline{i}+\frac{d y}{d t} \mathbf{j}$.

Along this curve $f(x, y)=f(x(t), y(t))$ where k is a constant.
Hence, differentiating with respect to t,
$\frac{d f}{d t}=0$
However, since f is a function of x and y and these are regarded as functions of t, we can apply the chain rule to differentiate f.

$$
\begin{aligned}
\frac{d f}{d t} & =\frac{d}{d t}(f(x), f(y)) \\
& =\frac{d f(x(t))}{d t} \underline{\mathbf{i}}+\frac{d f(y(t))}{d t} \underline{\mathbf{j}} \\
& =\left(\frac{d f}{d x} \cdot \frac{d x}{d t}\right) \underline{\mathbf{i}}+\left(\frac{d f}{d y} \cdot \frac{d y}{d t}\right) \underline{\mathbf{j}}
\end{aligned}
$$

But here $\frac{d f}{d x}=\frac{\partial f}{\partial x}$ is the partial derivative of f with respect to x, and likewise $\frac{d f}{d y}=\frac{\partial f}{\partial y}$ is the partial derivative of f with respect to y.
So, $\frac{d f}{d t}=\left(\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}\right) \underline{\underline{\mathbf{i}}}+\left(\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}\right) \underline{\mathbf{j}}$
Since $\frac{\partial f}{\partial t}=0$, this means $\left(\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}\right) \underline{\mathbf{i}}+\left(\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}\right) \underline{\mathbf{j}}$
Now the expression $\left(\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}\right) \underline{\mathbf{i}}+\left(\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}\right) \underline{\mathbf{j}}$ is the scalar (dot) product of the two
vectors $\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right),\left(\frac{d x}{d t}, \frac{d y}{d t}\right)$.
That is $\left(\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}\right) \underline{\mathbf{i}}+\left(\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}\right) \underline{\mathbf{j}}=\left(\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}, \frac{\partial f}{\partial y} \cdot \frac{d y}{d t}\right)=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \cdot\left(\frac{d x}{d t}, \frac{d y}{d t}\right)$
Hence the dot product of these two vectors is zero.
$\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \cdot\left(\frac{d x}{d t}, \frac{d y}{d t}\right)=0$
Hence the vector $\left(\frac{\partial f}{\partial x} \frac{\partial f}{\partial y}\right)$ is perpendicular to the vector $\left(\frac{d x}{d t}, \frac{d y}{d t}\right)$
Since the vector $\left(\frac{d x}{d t}, \frac{d y}{d t}\right)$ is tangent to the contour curve, the vector $\operatorname{grad} f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$ is normal to it.

Thus, along a contour curve we have
$\operatorname{grad} f \cdot\left(\frac{d x}{d t}, \frac{d y}{d t}\right)=0$

The surface $f(x, y, z)=c$
© blacksacademy.net

In three-dimensional space a scalar field is represented by the function $f(x, y, z)$.
A contour or level surface is given by
$f(x, y, z)=c$
Its gradient is
$\operatorname{grad} f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{d y} \mathbf{j}+\frac{\partial f}{\partial z} \underline{\mathbf{k}}$
By adaptation of the above proof to include the extra dimension, we can show that on a contour surface
$\operatorname{grad} f \cdot\left(\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right)=0$
So grad f is normal to the surface.
At a point P given by vector \mathbf{p} the normal line through P is given by
$\mathbf{r}=\mathbf{p}+t \operatorname{grad} f$
Since the tangent plane is perpendicular to this line, the equation of the tangent plane is $\mathbf{r}=(\mathbf{r}-\mathbf{p}) \cdot \operatorname{grad} f$

The Vector Operator Nabla

Instead of grad ϕ we can use the expression $\nabla \phi$. The symbol ∇ is pronounced 'del' or 'nabla'.
It stands for
$\nabla \phi=\mathbf{i} \frac{\partial \phi}{\partial x}+\mathbf{j} \frac{\partial \phi}{\partial y}+\mathbf{k} \frac{\partial \phi}{\partial z}$
And if signifies the operation of finding the first - order partial derivatives of ϕ and the formation of the vector field
∇ is not itself a vector, but by applying ∇ to a scalar field ϕ a vector field is defined; hence it is called a differential vector operator.

Example

Given that $\mathrm{g}(x, y, z)=4 x^{2}+3 x y+5 y^{2}+z^{2}+6 z+1$.
(i) Find $\frac{\partial \mathrm{g}}{\partial x}, \frac{\partial \mathrm{~g}}{\partial y}$ and $\frac{\partial \mathrm{g}}{\partial z}$.

A surface S has equation $4 x^{2}+3 x y+5 y^{2}+z^{2}+6 z+1=0$.
(ii) Find the equation of the normal line to S at the point $(1,0,-1)$.
(iii) This normal line meets the surface again at the point Q. Find the coordinates of Q.
(iv) Find the two values for of k for which $8 x+3 y+4 z=k$ is a tangent plane to the surface S.
© blacksacademy.net

Solution

(i) $\frac{\partial \mathrm{g}}{\partial x}=8 x+3 y, \quad \frac{\partial \mathrm{~g}}{\partial y}=3 x+10 y, \quad \frac{\partial \mathrm{~g}}{\partial z}=2 z+6$
(ii) We verify that the point $A(1,0,-1)$ is on the surface. In fact, we have
$g(1,0,-1)=4 \times 1^{2}+3 \times 1 \times 0+5 \times 0^{2}+(-1)^{2}+6(-1)+1=4+1-6+1=0$
At A we have $\frac{\partial \mathrm{g}}{\partial x}=8, \quad \frac{\partial \mathrm{~g}}{\partial y}=3, \quad \frac{\partial \mathrm{~g}}{\partial z}=4$
Therefore, $\operatorname{grad} g=\left(\begin{array}{l}8 \\ 2 \\ 4\end{array}\right)$
The normal line at $A(1,0,-1)$ is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)+t\left(\begin{array}{l}8 \\ 3 \\ 4\end{array}\right), \quad t \in \mathbb{R}$.
(iii) From (ii) we have that
(n) $\left\{\begin{array}{l}x=1+8 t \\ y=3 t \\ z=-1+4 t\end{array}\right.$

This line (n) meets again the surface S and this point is obtained from the following system

$$
\left\{\begin{array}{l}
x=1+8 t \\
y=3 t \\
z=-1+4 t \\
4 x^{2}+3 \cdot x \cdot y+5 y^{2}+z^{2}+6 z+1=0 .
\end{array}\right.
$$

Therefore $4 \times(8 t+1)^{2}+9 \times(8 t+1) \cdot t+5 \times 9 \times t^{2}+(4 t-1)^{2}+6 \times(4 t-1)+1=0$
$256 t^{2}+64 t+4+72 t^{2}+9 t+45 t^{2}+16 t^{2}-8 t+1+24 t-6+1=0$
$389 t^{2}+89 t=0 \quad \Rightarrow \quad t_{1}=0 \quad$ and $\quad t_{2}=-\frac{89}{389}$
Therefore $\quad Q\left(1-\frac{8 \cdot 89}{389}, \frac{-89 \cdot 3}{389},-1-\frac{89}{389} \cdot 4\right)$, i.e. $\quad Q\left(-\frac{323}{389},-\frac{267}{389},-\frac{745}{389}\right)$
(iv) We need $\frac{8 x+3 y}{8}=\frac{3 x+10 y}{3}=\frac{2 z+6}{4}=k_{0}$
(1) at the point (x, y, z) in which the tangent plane is of form $8 X+3 Y+4 Z=k$.

From (1) we obtain $\left\{\begin{array}{l}8 x+3 y=8 k_{0} \\ 3 x+10 y=3 k_{0} \\ 27+6=4 k_{0}\end{array}\right.$
© blacksacademy.net

Therefore $\left\{\begin{array}{l}-24 x-9 y=-24 k_{0} \\ 24 x+80 y=24 k_{0}\end{array} \oplus\right.$
$y=0, \quad x=k_{0} \quad$ and $\quad z=2 k_{0}-3$, i.e. $\quad(x, y, z)=\left(k_{0}, 0,2 k_{0}-3\right)$
This point satisfies the equation $4 x^{2}+3 x y+5 y^{2}+z^{2}+6 z+1=0$, i.e.
$4 k_{0}^{2}+\left(2 k_{0}-3\right)^{3}+6 \cdot\left(2 k_{0}-3\right)+1=0$, i.e.
$8 k_{0}^{2}-12 k_{0}+9+12 k_{0}-18+1=0$
$8 k_{0}^{2}-8=0 \quad \Rightarrow \quad k_{0}= \pm 1$.
I. $\quad k_{0}=-1, \quad(x, y, z)=(-1,0,-5)$

Therefore $k=8 \cdot(-1)+3 \cdot 0+4 \cdot(-5)=-28$
So, $8 x+3 y+4 z=-28$
II. $\quad k_{0}=1, \quad(x, y, z)=(1,0,-1)$

Therefore $k=8 \cdot 1+3 \cdot 0+4 \cdot(-1)=4$
So, $8 x+3 y+4 z=4$

© blacksacademy.net

