Graphs of Inequalities

Inequalities are used when comparing two quantities that are not equal. These quantities may or may not vary as a function of another variable. In both cases the inequalities may be represented graphically.

To find the region where $f(x)>0$, solve the equation $f(x)=0$, then identify the region by testing whether an arbitrary point lies in the region or not.

Example 1

Show the inequality $x>3$ graphically.

Solution

First, let $x=3$. Draw this line on the graph.
The region where $x>3$ will lie on one side of this line. To find which side the region is test one point. Often the origin, where $x=0, y=0$ is the most convenient point to test. When $x=0$ it is not true that $x>3$, so the origin does not lie in the required region. Therefore, the region lies to the right of the line.

The dashed line indicates that the line is not included in the region. This is because the inequality takes the form $x>3$ and not $x \geq 3$, so the inequality is not exact.

Example 2

Sketch the region where $y+3 x+2>0$

Solution

Let $y=-3 x-2$
Does $x=0, y=0$ lie in the region?
When $x=0, y=0$ then $y+3 x+2=2>0$
Hence, $(0,0)$ does lie in the region.

In the diagram the dashed line indicates that the line is not included in the region.

Example 3

Sketch the region where $y \geq x+3$ and $y>2 x$

Solution
Let
$x+3=2 x$
$x=3$
Thus, the intersection of the two lines occurs at $x=3, y=6$

That is to say at the point $(3,6)$

The solid line for $y=x+3$ indicates that this time the line is included in the region. This is because the inequality is in this case exact, $y \geq x+3$ as opposed to $y>x+3$.

