Homomorphisms

Consider S_3 the group of symmetries of the equilateral triangle. We have seen that it has the following combination table.

	Ι	R_1	R_2	Q_1	Q_2	Q_3
Ι	I R_1	R_1	R_2	Q_1	Q_2	Q_3
R_1	R_1	R_2	Ι	Q_2	Q_3	Q_1
R_2	R_2	Ι	R_1	Q_3	Q_1	Q_2
Q_1	Q_1 Q_2 Q_3	Q_2	Q_3	Ι	R_1	R_2
Q_2	Q_2	Q_3	Q_1	R_1	Ι	R_1
Q_3	Q_3	Q_1	Q_2	R_2	R_1	Ι

The partition shows that the group can be divided into four quadrants as follows:

	R	Q
R	R	Q
Q	Q	R

where *R* stands for any rotation and *Q* stands for any reflection. The set $\{R, Q\}$ is a group under the operation of composition of transformations. This structure is isomorphic to \mathbb{Z}_2 the cyclic group of two elements.

Thus \mathbb{Z}_2 is a substructure of S_3 .

In order to capture this concept of one substructure manifested in another we define a homomorphism.

An homomorphism, ϕ , is a mapping (many-one correspondence) such that

1.
$$\phi: (G, \mathbf{O}) \to (H, \Box)$$

2.
$$\phi(a \circ b) = \phi(a) \Box \phi(b)$$
 for all $a, b \in G$

Thus, the homomorphism property is the same property that preserves structure for isomorphisms. The difference is that isomorphisms are special cases of

© blacksacademy.net

homomorphisms - they are homomorphisms such that the order of G is equal to the order of H

 $|\mathbf{G}| = |\mathbf{H}|$

This means that there are exactly the same number of elements in G as there are in H.

That is, isomorphisms are one-one correspondences (bijections) but homomorphisms are many-one correspondences. Isomorphisms are specials cases of homomorphisms. An isomorphism is a bijective homomorphism.

For S_3 the homomorphism from \mathbb{Z}_2 to \mathbb{Z}_2 maps rotations of S_3 to 0 and reflections of S_3 to 1.

 $\phi \qquad \{I, R, R_2\} \rightarrow 0$ $\{Q, Q_2, Q_3\} \rightarrow 1$

The homomorphism property can be verified for any pair of elements of S₃

© blacksacademy.net