Hyperbolic Functions

The need for hyperbolic functions

Suppose we hang a rope between two points, which are -1 and +1 units from a fixed point 0 .

It can be shown that y as a function of x is given by
$y=\frac{1}{a}\left(\frac{e^{a x}+e^{-a x}}{2}\right)$
Where a is a constant. The constant a is determined by the length of the rope.

As a increases the curve becomes more bent. It turns out that in applications of the calculus to problems in physics and mechanics the expression $\frac{e^{x}+e^{-x}}{2}$ recurs frequently. It, therefore, is appropriate to define a function that we can equate with this. In fact, we define six hyperbolic functions as follows.

Definitions of the hyperbolic functions

Hyperbolic sine of \boldsymbol{x}

$\sinh x \equiv \frac{1}{2}\left(e^{x}-e^{-x}\right)$
Hyperbolic cosine of \boldsymbol{x}
$\cosh x \equiv \frac{1}{2}\left(e^{x}+e^{-x}\right)$
Hyperbolic tangent of \boldsymbol{x}
$\tanh x \equiv \frac{\sinh x}{\cosh x} \equiv \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$

$$
\begin{aligned}
& =\frac{\frac{e^{x}}{e^{-x}}-\frac{e^{-x}}{e^{-x}}}{\frac{e^{x}}{e^{-x}}+\frac{e^{x}}{e^{-x}}} \\
& =\frac{e^{2 x}-1}{e^{2 x}+1}
\end{aligned}
$$

Hyperbolic secant of x
$\operatorname{sech} x=\frac{1}{\cosh x}$
Hyperbolic cosecant of \boldsymbol{x}
$\operatorname{cosech} x=\frac{1}{\sinh x}$

Hyperbolic cotangent of x

$\operatorname{coth} x=\frac{1}{\tanh x}$
Straightforward applications of these definitions are illustrated by the following.

Example (1)
Find the value of x such that $\tanh x=3 / 4$.

$$
\begin{aligned}
& \tanh x=\frac{3}{4} \\
& \therefore \frac{e^{2 x}-1}{e^{2 x}+1}=\frac{3}{4} \\
& \therefore 4\left(e^{2 x}-1\right)=3\left(e^{2 x}+1\right) \\
& 4 e^{2 x}-4=3 e^{2 x}+3 \\
& e^{2 x}=7 \\
& 2 x=\ln 7 \\
& x=\frac{1}{2} \ln 7
\end{aligned}
$$

Graphs of the hyperbolic functions

The graphs of these hyperbolic functions are drawn by adding the exponential curves on which they are defined.

Sinh x

This following shows the graph $y=2 \sinh x=\left(e^{x}-e^{-x}\right)$

So $y=\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)$ is a scaling of this graph by $1 / 2$

Example (2)

Sketch the graphs of $\cosh x$ and $\tanh x$.

$\operatorname{Cosh} x$

$\operatorname{Tanh} x$

$\tanh x=\frac{e^{2 x}-1}{e^{2 x}+1}$
$x \rightarrow+\infty \frac{e^{2 x}-1}{e^{2 x}+1} \rightarrow \frac{e^{2 x}}{e^{2 x}}=1$
$x \rightarrow-\infty \frac{e^{2 x}-1}{e^{2 x}+1} \rightarrow \frac{-1}{1}=-1$
when $x=0 \quad \tanh 0=\frac{1-1}{1+1}=0$
It is a monotone increasing function with asymptotes at $y= \pm 1$

© blacksacademy.net

