
 
 

© blacksacademy.net 
 
1 

Hyperbolic Functions 
 
 

The need for hyperbolic functions 
   
Suppose we hang a rope between two points, which are –1 and +1 units from a fixed point O. 
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It can be shown that y as a function of x is given by 
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Where a is a constant.  The constant a is determined by the length of the rope. 
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As a increases the curve becomes more bent.  It turns out that in applications of the calculus to 

problems in physics and mechanics the expression 


2

x xe e
 recurs frequently. It, therefore, is 

appropriate to define a function that we can equate with this. In fact, we define six hyperbolic 

functions as follows. 
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Definitions of the hyperbolic functions 
 
Hyperbolic sine of x  
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Hyperbolic cosine of x   
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Hyperbolic secant of x  
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Hyperbolic cosecant of x  
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Hyperbolic cotangent of x 
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Straightforward applications of these definitions are illustrated by the following. 

 

Example (1) 

Find the value of x such that tanh x  = 3/4. 
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Graphs of the hyperbolic functions 
 
The graphs of these hyperbolic functions are drawn by adding the exponential curves on which 

they are defined.   

 

Sinh x 

This following shows the graph    2sinh x xy x e e  
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So    
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x xy x e e   is a scaling of this graph by 1
2  
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Example (2) 

Sketch the graphs of cosh x and tanh x. 

 

Cosh x 

y e = xy e = x

y e  e = + xx

y

x

y  x = cosh

 

 

Tanh x 
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It is a monotone increasing function with asymptotes at  1y  
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