Implicit Differentiation

The need for implicit differentiation

It is not always possible to write a function in the form $y=f(x)$. When this can be done the function is said to be defined explicitly. However, the terms y and x can be so "involved" with each other that y cannot be separated from x. Such expressions are called "relations" and the variable y is said to be defined implicitly in terms of the variable x. For example, the circle has equation $x^{2}+y^{2}=1$. We can obtain an equation for y in terms of x, but this immediately involves the complication of the introduction of square root.
$y^{2}= \pm \sqrt{1+x^{2}}$
It would be possible to differentiate this function in this form by use of the chain rule, however, it seems that another approach would be useful. This approach is to use implicit differentiation. It the expression $x^{2}+y^{2}=1, y$ may be regarded as a function of x. The following form makes this clear.
$y=y(x)$
The y on the right stands for the function as a function of the variable x; the y on the right stands for the value that the function $y(x)$ takes. Then the expression
$y^{2}=[y(x)]^{2}$
exhibits y^{2} as a composite function.

Example (1)

(a) Decompose $y^{2}=[y(x)]^{2}$ into two composite functions.
(b) Differentiate
(i) $y^{2}=[y(x)]^{2}$
(ii) x^{2}
(iii) 1
(c) (i) Differentiate $x^{2}+y^{2}=1$ to obtain an expression involving $\frac{d y}{d x}$
(ii) Rearrange this equation to make $\frac{d y}{d x}$ the subject
(d) (i) Sketch the circle $x^{2}+y^{2}=1$
(ii) Mark onto this sketch a tangent at a point (x, y)
(iii) From the sketch write down the gradient at the point (x, y)

Solution
(a) Let $f(x)=x^{2}$ then
$y^{2}=f(y)=f(y(x))$
is a composite function
(b) (i) By the chain rule

$$
\frac{d}{d x} y^{2}=2 y \times \frac{d y}{d x}
$$

(ii) $\frac{d}{d x} x^{2}=2 x$
(iii) $\frac{d}{d x} 1=0$
(c)
(i) $x^{2}+y^{2}=1$

$$
2 x+2 y \frac{d y}{d x}=0
$$

(ii)

$$
2 y \frac{d y}{d x}=-2 x
$$

$$
\frac{d y}{d x}=-\frac{x}{y}
$$

(d)
(i) and (ii)

(iii) From the sketch we see
gradient $=\frac{d y}{d x}=-\frac{x}{y}$

This is implicit differentiation. Effectively, we are applying the chain rule $\frac{d v}{d x}=\frac{d v}{d y} \times \frac{d y}{d x}$ where $v=v(y(x))$ is a composite function to obtain an expression involving $\frac{d y}{d x}$. In the following example we must use both the product and chain rules to find $\frac{d y}{d x}$ implicitly.

Example (2)

Given that $x y^{2}=2 x$ find $\frac{d y}{d x}$ in terms of x and y.

Solution
$x y^{2}=2 x$
$\frac{d}{d x}\left(x y^{2}\right)=\frac{d}{d x}(2 x)$
$\left(\frac{d}{d x} x\right) y^{2}+x\left(\frac{d}{d x} y^{2}\right)=2 \quad$ Product rule
$y^{2}+x \times 2 y \times \frac{d y}{d x}=2 \quad$ Chain rule (implicit differentiation)
$2 x y \frac{d y}{d x}=2-y^{2}$
$\frac{d y}{d x}=\frac{2-y^{2}}{2 x y}$

It is not only polynomial functions that can be differentiated implicitly.

Example (3)

Given that $e^{x} \sin x=\cos y$ find $\frac{d y}{d x}$ in terms of x and y.

Solution

$$
\begin{aligned}
& e^{x} \sin x=\cos y \\
& e^{x} \sin x+e^{x} \cos x=-\sin y \frac{d y}{d x} \\
& \frac{d y}{d x}=-\frac{e^{x}(\sin x+\cos x)}{\sin y}
\end{aligned}
$$

Problem solving involving implicit differentiation

Problems may be set requiring implicit differentiation

Example (4)

Find the equation of the tangent to $x^{3}+2 x y+y^{2}=16$ at the point in the first quadrant where $x=1$.

Solution

$$
\begin{aligned}
& x^{3}+2 x y+y^{2}=16 \\
& 3 x^{2}+2 y+2 x \frac{d y}{d x}+2 y \frac{d y}{d x}=0 \\
& \frac{d y}{d x}(2 x+2 y)=-\left(3 x^{2}+2 y\right) \\
& \frac{d y}{d x}=-\frac{3 x^{2}+2 y}{2(x+y)}
\end{aligned}
$$

When $x=1$ we have $1+2 y+y^{2}=16$
$\therefore y^{2}+2 y-15=0$
$(y+5)(y-3)=0$
$\therefore y=-5$ or $y=3$
The point in the first quadrant has coordinates $(1,3)$
Evaluating $\frac{d y}{d x}$ at the point $(1,3)$
$\left.\frac{d y}{d x}\right|_{(1,3)}=\frac{-3-6}{2+6}=\frac{-9}{8}$
Then $y=-9 / 8 x+c$ passing through $(1,3)$ is the tangent.
Substituting $x=1, y=3$ into $y=-9 / 8 x+c$ gives
$3=-9 / 8 x+c \quad \Rightarrow \quad c=33 / 8$
\therefore the equation of the tangent is $y=-9 / 8 x+33 / 8$

Parametric differentiation

A function is a relationship between two variables with general form
$y=f(x)$
However, it is possible that both x and y are given as functions of another variable, called a parameter. An example is
$x(t)=\cos 2 t \quad y(t)=\sin t$
As t varies the point $P=(x(t), y(t))$ moves along the curve whose relationship is $y=f(x)$. The gradient of this curve is given by

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{d y}{d t} \times \frac{d t}{d x}
$$

This rule is another application of the chain rule.

Example (5)

Given $x(t)=\cos 2 t, y(t)=\sin t$ find $\frac{d y}{d x}$ in terms of t.

Solution
$\frac{d x}{d t}=-2 \sin 2 t \quad \frac{d y}{d t}=\cos t$
$\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=-\frac{\cos t}{2 \sin 2 t}$

Example (6)

Given that $x(t)=1-t^{2}, y(t)=1+t^{3}$, find $\frac{d y}{d x}$ in terms of t.

Solution
$\frac{d x}{d t}=-2 t \quad \frac{d y}{d t}=3 t^{2}$
$\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{3 t^{2}}{-2 t}=-\frac{3}{2} t$

