Implicit differentiation and the second derivative

This material is based on more challenging problems involving the use of implicit and parametric differentiation, and building on the geometric intuition of a good knowledge of conic sections.

Usually to solve the problem set you have to obtain an expression for the second derivative in cases where the relation between y and x is defined implicitly or parametrically

Example

Find the equation of the right circular cone that is circumscribed about a sphere with radius r and the volume of the cone when it is at a minimum.

Solution
The following diagram illustrates the problem.

Let α be the angle subtended at the top of the cone and let $\theta=\frac{\alpha}{2}$.

The strategy for solving this problem is to find the volume as a function of the angle θ, and then to differentiate this function to find when the volume as a minimum. The function will have to be differentiated a second time in order to prove that this is a minimum by the usual criterion that the turning point is a minimum if the second derivative at that point is positive.

Let h be the height of the cone, and let R be the base distance of the cone.
The volume of a cone is given by the usual formula
$V=\frac{1}{3} \pi R^{2} h$
In the diagram the radius of the circle, r, makes a tangent at the point of contact with the cone, so we have a right-angled triangle, and hence

$$
O V=\frac{r}{\sin (\theta)}
$$

$h=r+\frac{r}{\sin (\theta)}$
$R=h \tan (\theta)$

Therefore
The volume of hte cone is

$$
\begin{aligned}
V & =\frac{\pi R^{2} h}{3} \\
& =\frac{\pi(h \tan (\theta))^{2} h}{3} \\
& =\frac{\pi h^{3} \tan ^{2}(\theta)}{3} \\
& =\frac{\pi\left(r+\frac{r}{\sin (\theta)}\right)^{3} \tan ^{2}(\theta)}{3} \\
& =\frac{\pi r^{3}\left(\frac{\sin \theta+1}{\sin ^{3} \theta}\right)^{3} \tan ^{2} \theta}{3}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\pi r^{3}}{3} \times \frac{(1+\sin (\theta))^{3}}{\sin ^{3}(\theta)} \times \frac{\sin ^{2}(\theta)}{\cos ^{2}(\theta)} \\
& =\frac{\pi r^{3}}{3} \times \frac{(1+\sin (\theta))^{2} \sin ^{2} \theta}{\sin ^{3}(\theta)\left(1-\sin ^{2}(\theta)\right)} \\
& =\frac{\pi r^{3}}{3} \times \frac{(1+\sin (\theta))^{2}}{\sin \theta\left(1-\sin ^{2}(\theta)\right)}
\end{aligned}
$$

Let the function $f(x)$ be such that
$f(\theta)=\frac{\pi \cdot r^{3}}{3} \times \frac{(1+\sin (\theta))^{3}}{\sin \theta(1-\sin (\theta))}$, where $\theta \in\left(0, \frac{\pi}{2}\right)$
We denote by $\sin \theta=x$. We have $\theta=\sin ^{-1}(x)$. From this

$$
g(x)=\frac{\pi r^{3}}{3} \times \frac{(1+x)^{2}}{x(1-x)}, \quad x \in(0,1)
$$

Differentiating g, i.e.

$$
g^{\prime}(x)=\frac{\pi r^{3}}{3} \times \frac{2(1+x) x(1-x)-(1-x)^{2}(1-2 x)}{x^{2}(1-x)^{2}}
$$

For turning points
$\mathrm{g}^{\prime}(x)=0$
That is

$$
\begin{aligned}
& (1+x)(2 x(1-x)-(1+x)(1-2 x))=0 \\
& (1+x)\left(2 x-2 x^{2}-1+2 x-x+2 x^{2}\right)=0 \\
& (1+x)(3 x-1)=0
\end{aligned}
$$

From this, we get $x=-1$, which is impossible, and $x=\frac{1}{3}$ which is the answer .
To show that this is a minimum, we must differentiate again

$$
\begin{aligned}
\mathrm{g}^{\prime \prime}(x) & =\frac{\pi r^{3}}{3}\left(\frac{(1+x)(3 x-1)}{x^{2}(1-x)^{2}}\right)^{\prime} \\
& =\frac{\pi r^{3}}{3} \times \frac{(3+6 x-1) x^{2}(1-x)^{2}}{x^{4}(1-x)^{4}}-\frac{(1+x)(3 x-1)[2 x(1-x)(1-2 x)]}{x^{4}(1-x)^{4}}
\end{aligned}
$$

$$
=\frac{\pi r^{3}}{3} \times \frac{(6 x+2) x^{2}(x-1)^{2}-2(1+x)(3 x-1) x(1-2 x)}{x^{4}(1-x)^{4}}
$$

$\mathrm{g}^{\prime \prime}\left(\frac{1}{3}\right)=\frac{\pi r^{3}}{3} \times 4 \times \frac{1}{9} \times \frac{4}{9} \times 3^{4} \times \frac{3^{4}}{2^{4}}>0$
Therefore $x=\frac{1}{3}$ is the minimum point of the function g.
Therefore the angle is $\theta=\sin ^{-1}\left(\frac{1}{3}\right)$.
The volume of the cone at this minimum is
$\left.V\right|_{\theta=\frac{1}{3}}=\frac{\pi r^{3}}{3} \times \frac{(1+\sin (\theta))^{2}}{\sin \theta\left(1-\sin ^{2}(\theta)\right)}=\frac{\pi r^{3}}{3} \times \frac{\left(1+\frac{1}{3}\right)^{2}}{\frac{1}{3}\left(1-\left(\frac{1}{3}\right)^{2}\right)}=2 \pi r^{3}$

