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Implicit differentiation and the second derivative 
 
 
This material is based on more challenging problems involving the use of implicit and 
parametric differentiation, and building on the geometric intuition of a good knowledge 
of conic sections. 
 
Usually to solve the problem set you have to obtain an expression for the second 
derivative in cases where the relation between y and x is defined implicitly or 
parametrically 
 
 Example 
 

Find the equation of the right circular cone that is circumscribed about a sphere 
with radius r and the volume of the cone when it is at a minimum. 

 
 Solution 
 
 The following diagram illustrates the problem. 
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Let   be the angle subtended at the top of the cone and let 
2

  .  
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The strategy for solving this problem is to find the volume as a function of the 

angle , and then to differentiate this function to find when the volume as 

a minimum.  The function will have to be di


fferentiated a second time in order

to prove that this is a minimum by the usual criterion that the turning point is a 

minimum if the second derivative at that point is positive.

 

 
Let h be the height of the cone, and let R be the base distance of the cone. 
 
The volume of a cone is given by the usual formula 
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In the diagram the radius of the circle, , makes a tangent at the point

of contact with the cone, so we have a right-angled triangle, and hence
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The volume of hte cone is
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Let the function    be such that f x  
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We denote by sin x  .  We have  1sin x  . From this 
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Differentiating ,   i.e.  
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For turning points
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From this, we get 
1

1, which is impossible, and    which is the answer
3

x x   . 

To show that this is a minimum, we must differentiate again 
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Therefore 
1

3
x   is the minimum point of the function g. 

Therefore the angle is 1 1
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The volume of the cone at this minimum is
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