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Impulsive Tensions in Strings 
 
 
 
 
 

Prerequisites 
 

You should be familiar the definitions of impulse and momentum. 

 

Definition of momentum 

  momentum  mass  velocity mvJ  

Principle of conservation of momentum for a collision between two particles 

When two particles collide 

Total momentum before collision = Total momentum after collision. 

 

The following question essentially involves no new theory but is an application of existing theory 

to a new situation. 

 

Example (1) 

Two particles A and B are connected by means of a light, inextensible string and are 

initially at rest on a smooth, horizontal surface.  Particle A has mass 4 kg  and particle B 

has mass 3 kg .   Initially the string is slack when particle B is given an impulse of 21 Ns  

along the line joining the centres of mass of A and B and in a direction away from A.  Find 

the impulse in the string when the string first becomes taut and the subsequent velocity 

of both A and B at that instant. 

 

Firstly, let us visualise the problem. 

 

Moment before the 
string becomes taut

AAA
4 kg 3 kg

21 Ns

A B
Direction in which both particles will move
the instant after they become connected

 

 

The diagram shows the instant when the string becomes taut.  At this instant the two particles 

become connected.  The momentum of B before at that instant is 24 Ns.  Part of this momentum 
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will be communicated to A, which is initially at rest.  After the impulse is communicated, that is 

after the jerk of the string, both particles must continue to move in the same direction in which B 

was moving before the string became taut. 

 

This is similar to a problem involving a collision between two particles A and B where one is 

initially at rest.  A collision similarly communicates an impulse from one object to another.  Yet in 

order to solve a problem involving a collision we would need to know whether any energy was lost 

in the collision, or alternatively we would require information about the elasticity of the collision.  

However, here the impulse is communicated from B to A by means of a light, inextensible string, 

and the surface is smooth, meaning frictionless, so conservation of momentum is sufficient to 

determine the outcome of the interaction.  In a collision one particle can “bounce” off the other 

and the direction of motion can be reversed.  When the impulse is communicated by means of a 

string, the impulse must be communicated along the string, and in the case we are considering 

here, both particles must move with the same velocity v, that is, with the same speed and in the 

same direction. 

 

Solution 

  

4 kg 3 kg

Before impulse After impulse

AAAA B AAA

v

A B
4 kg 3 kg

21 Ns v

J

 

 

The combined mass of the two particles is   4 3 7 kgM  







 1

momentum before momentum after

21

21 7

3 ms

Mv

v

v

 

The impulse is shown in the diagram by the triangle positioned along the string.  Two 

triangles are shown representing the fact that the impulse communicated to A by B is the 

same as the impulse communicated by B to A.  Particle A is accelerated by this impulse 

from rest, so the impulse is the change in momentum of A given by 

    change in momentum 4 3 12 NsAm vJ  
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In two dimensions 
 

In two dimensions the same principles apply.  When a string becomes taut an impulse is 

communicated along the line of the string.  If one particle is at rest and is subject to an impulsive 

jerk from a string, then at that instant it must move in the direction in which the impulse was 

communicated – this being an application of the principle of conservation of momentum. 

 

Example (2) 

The diagram shows two particles, A with mass 3 kg and B with mass 5 kg, connected by a 

light inextensible string of length l m.  Initially, both particles are lying at rest on a 

smooth horizontal surface a distance l m apart, with the string just slack.  Particle B is 

given a blow of impulse 32.5 Ns in the direction away from A at an angle   to the line 

joining A to B where  
5

tan
12

.  Determine the magnitude and direction of the velocities 

of A and B immediately after the blow. 

 

A B

32.5 Ns



 

 

The solution to this problem rests upon the following intuition.  When the particle B is initially 

struck its momentum (and velocity) have both horizontal and vertical components.  Here the 

impulsive jerk in the string acts only in the horizontal direction.  Therefore, the momentum of B 

in the vertical direction is unaffected by the jerk of the string.  This applies only at the instant of 

the jerk.   

 

 Solution 

Let the horizontal and vertical components of the velocity of B the instant after the string 

becomes taut be 1 msu  and 1 msv  respectively.  The velocity of A at that instant is also 

1 msu  in the horizontal direction. 

 

uA B

5 kg

v

u

3 kg
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When B was struck it had a velocity of 





  1

momentum = mass  velocity

momentum 32.5
velocity = 6.5 ms

mass 5

 

The vertical component of the velocity of B after the string becomes taut, which here is v, 

is the same as vertical component of this initial velocity. 

 

6.5
v



13



12

5

 

 

Hence 







 

 1

6.5sin

5
6.5

13

2.5 ms

v

 

The horizontal component of the momentum given to B when it was struck is 



 



32.5cos

12
32.5

13
30 Ns

J

 

This is equal to the combined momentum of A and B after the string becomes taut. 

 


  

 1

30 8

3.75 ms

A Bm m u u

u
 

The direction of A is along the line joining A to B.   

 



3.75

2.5

 

 

The direction of B is given by   where 

 







  

2.5
tan

3.75
33.7 0.1

 

and the speed of B is 

        
2 2 1speed 3.75 2.5 20.3125 4.51 ms    3 s.f.  
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Energy considerations 

This sub-section is optional; example (3) is not.  In order to understand the effect of an impulsive 

tension in as string, we shall consider what has happened to the energy in the system of example 

(2) as a result of the impulsive tension in the string when it became taut.  The energy before this 

moment is that of particle B, which was given an impulse of 32.5 Ns, and so was moving with 

speed 

   1impulse 32.5
speed of  before jerk 6.5 ms

mass 5
B  

Hence 

       
2 21 1

Kinetic energy of  before jerk 5 6.5 105.625 J
2 2B BB m v  

After the jerk in the string no momentum is lost from the system as a whole.  The combined 

centre of mass of the two particles A and B moves with this impulse and hence  

   1impulse 32.5
speed of centre of mass of  and  after jerk 4.0625 ms

mass 8
A B  

and the energy associated with this is 

     
221 1

Kinetic energy of centre of mass after jerk 8 4.0625 66.015625 J
2 2

Mv  

The kinetic energies of A and B after the jerk are 

       
2 21 1

Kinetic energy of  after jerk 3 3.75 21.09375 J
2 2A AA m v  

       
2 21 1

Kinetic energy of  after jerk 5 4.51... 50.78125 J
2 2B BB m v  

The total kinetic energy of A and B after the jerk is  50.78125 21.09375 71.875 J .  It appears 

that the two particles have  71.875 66.015625 5.859375 J  more linear kinetic energy than that 

of their combined centre of mass.  This is correct.  If we examine the following diagram 

 

32.5 Ns



A B
5 kg

v = 2.5 ms

3 kg
CM
8 kg

u = 3.75 ms–1
u = 3.75 ms–1

l

–1

 

 

we see that particle B is moving around the centre of mass  CM  and so has rotational kinetic 

energy as well as linear kinetic energy.  At this instant, the horizontal components of the velocity 
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  13.75 msu  do not contribute any rotational momentum or energy.  However, the vertical 

component of the velocity of B   12.5 msv  does.   We will assert that the missing energy of 

5.859375 J  is accounted for by the rotational energy of the entire system about the centre of 

mass  CM .  So after the impulsive jerk the whole system is gyrating about its common centre of 

mass, whilst the common centre of mass moves off in the direction of the original impulse.1 

 

Example (3) 

Two particles P and Q of mass 2 kg and 3 kg respectively, are attached one to each end of 

a light inextensible string of length 2 m.  Initially, the particles are at rest on a smooth 

horizontal surface a distance 1 m apart, as shown in the diagram.  Particle Q is then 

projected horizontally with velocity 1 msU  in a direction 90 to the line joining the initial 

positions of P and Q. 

 

P Q

U ms–1

1 m

2 m  

 

Some time later the string becomes taut.  At the instant of the jerk particle Q is found to 

be moving with a speed of 15 ms .  Find (a) the original velocity of projection of particle 

                      
1 To show that the rotational energy of A and B (combined) about CM is equal to the missing 5.859375 J is 

beyond the scope of this chapter.  However, for completeness it is given by  21
2

E I  where I is the moment of 

inertia of the two particles about CM and   is the angular velocity of this moment of inertia about CM.   The 

centre of mass, CM, is situated 
3
8

l  from B and 
5
8

l  from A.  The moment of inertia of A and B together is  

                
   

2
2 2 2 25 3 5 3

3 5
3 8 8A A B BI m r m r l l l  

Here l is the radius of gyration.  The angular velocity of A and B about CM is the same as the angular velocity 

of B about the radius of gyration   
2.5Bv

l l
.  Hence the rotational kinetic energy of the system after the jerk 

is            
   

2
2 21 1 3 5 2.5

5.859375 J 
2 2 8

E I l
l

. 
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Q, (b) the angle between the velocity of P and the velocity of Q immediately after the jerk, 

and (c) the impulsive tension in the string during the jerk. 

 

Solution 

Let the component of the velocity of Q at the moment of the jerk along the line of the 

string be v and let the component of the velocity of Q at that same moment perpendicular 

to the string be u.  Let the impulsive tension in the string during the jerk be J.  Let 

 15 msV  be the speed of Q after the impulsive jerk. 

 





P

Q

U

2

1

u v

v

J

J

V Q= velocity of  after impulse

U Q= velocity of  before impulse

U sin60

u U = cos60



u

v

5



 

 

We are given 

  

 

2 2 1

2 2

5 ms

25

V v u

v u
 

Let the angle the string makes with the horizontal at the moment of the jerk be  .  At the 

instant the string becomes taut the distance between P and Q is 2 m.  The horizontal 

distance is 1 m, so the angle       
 

1 1
cos 60

2
.  The jerk in the string does alter the 

momentum of Q in the direction perpendicular to the string.  Hence 

  cos60
2

U
u U  

As the diagram indicates because the impulsive tension in the string is conveyed along 

the line of the string, after the jerk both particles P and Q  must be moving with velocity v 

in the direction of the string.   The impulse J causes P of mass 2 kg to accelerate from rest 

to 1 msv .  Hence 

 2J v . 
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This same impulse causes Q of mass 3 kg to decelerate along the line of the string from 

  13
sin 60  ms

2
U U  to 1 msv .  Hence 

 
3

3
2

J U v . 

Equating expressions for J, we get 

 





3
3 2

2

3
5

2

3

10

U v v

v U

v U

 

(a) Since  2 2 25v u  we have 

 

           



 

2 2

2

1

3
25

10 2

28
25

100

9.4491... 9.45 ms 3 s.f.

U
U

U

U

 

This is the original velocity of Q before the jerk.   

 







 
 
   

 
  
 

  

( ) Let  be the angle between the velocities of  and  after the jerk.  Then

52
tan

33

10

70.9 0.1

b P Q

U
u

v
U

 

 

   

 

3 3 2500
( ) 1.63663...

10 10 28

2 3.27 Ns 3 s.f.

c v U

J v

 

 

 

 


