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Integration of Rational Functions by 
Decomposition into Partial Fractions 
 
 
Integrating partial fractions 
 
The technique of decomposition of rational functions into partial fractions is used to bring 

rational functions into a form in which they can be integrated.  When integrating partial fractions 

one has to recall the following standard integrals 
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When a rational function is decomposed into its partial fractions, the resultant fractions are often 

of the form 

    2 2 2 2

1A Ax
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Although expressions of the form 
2 2

1

a x
 do not occur in the context of partial fractions, it is  

also useful to bear in mind also the following results. 
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Example (1) 

Express 
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Example (2) 

Find the indefinite integral of 
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Breaking into partial fractions
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Integrals with a variable limit 
 

Consider an integral of the form 

 
0

x

f t dt  

The function is given as a function of one variable, here  f f t , and in the limit there is another 

variable.  We are being asked to find the integral from 0 to x of the function  f f t .  The result 

will be another function that depends on x.  The x  here represents a variable limit. 

 

Example (4) 

Find 
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 Substituting  5x  we get 
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Functions with variable limits frequently occur in the context of physics. 

 

Example (4) 

A particle Q is in situated in an electric field.  The force acting on this particle is a 

function of the r = the distance of the particle from the centre of the electric field, and is 

given by 
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where k is a constant.  The work done on moving the particle from   to r a r b  is 
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U F dr  

Find the work done in terms of x when a particle is moved from  1 to r r x . 

 

Solution 
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Example (5) 

A force acting on a particle is given by the function 
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The energy of this particle is 
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Find this energy as a function of x. 
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