Integration of Rational Functions by Decomposition into Partial Fractions

Integrating partial fractions

The technique of decomposition of rational functions into partial fractions is used to bring rational functions into a form in which they can be integrated. When integrating partial fractions one has to recall the following standard integrals
$\int \frac{1}{x} d x=\ln (x)+c$
$\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+c$
$\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+c$
$\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c$
When a rational function is decomposed into its partial fractions, the resultant fractions are often of the form
$\frac{A}{x+\alpha} \quad \frac{A x}{x^{2}+\alpha^{2}} \quad \frac{1}{x^{2}+\alpha^{2}}$
Although expressions of the form $\frac{1}{\sqrt{a^{2}-x^{2}}}$ do not occur in the context of partial fractions, it is also useful to bear in mind also the following results.
$\int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+c$
$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c$
$\int \frac{-1}{\sqrt{1-x^{2}}} d x=\cos ^{-1} x+c$
$\int-\frac{1}{\sqrt{a^{2}-x^{2}}} d x=\cos ^{-1}\left(\frac{x}{a}\right)+c$

Example (1)

Express $\frac{5}{(x+1)\left(x^{2}+4\right)}$ in the form $\frac{A}{x+1}+\frac{B x}{x^{2}+4}+\frac{C}{x^{2}+4}$ and hence show that
$\int_{0}^{2} \frac{5}{(x+1)\left(x^{2}+4\right)} d x=\frac{1}{2} \ln \left(\frac{9}{2}\right)+\frac{1}{8} \pi$
Solution
Let

$$
\left.\begin{array}{l}
\frac{5}{(x+1)\left(x^{2}+4\right)} \equiv \frac{A}{x+1}+\frac{B x+C}{x^{2}+4} \equiv \frac{A\left(x^{2}+4\right)+(B x+C)(x+1)}{(x+1)\left(x^{2}+4\right)} \\
\begin{array}{rl}
\therefore 5 \equiv A\left(x^{2}+4\right)+(B x+C)(x+1)
\end{array} \\
x=-1 \Rightarrow 5=5 A \Rightarrow A=1 \\
x=0 \Rightarrow A=1 \Rightarrow 5=4+C \Rightarrow C=1 \\
x=1 \Rightarrow A=1 \Rightarrow C
\end{array}=1 \Rightarrow 5=5+2(B+1) \Rightarrow 2(B+1)=0 \Rightarrow B=-1\right] \text { (} \begin{aligned}
\therefore \frac{5}{(x+1)\left(x^{2}+4\right)}=\frac{1}{x+1}-\frac{x}{x^{2}+4}+\frac{1}{x^{2}+4} \\
\begin{aligned}
\int_{0}^{2} \frac{5}{(x+1)\left(x^{2}+4\right)} d x & =\int_{0}^{2} \frac{1}{x+1} d x-\int_{0}^{2} \frac{x}{x^{2}+4} d x+\int_{0}^{2} \frac{1}{x^{2}+4} d x \\
& =[\ln |x+1|]_{0}^{2}-\left[\frac{1}{2} \ln \left|x^{2}+4\right|\right]_{0}^{2}+\left[\frac{1}{2} \tan ^{-1}\left(\frac{x}{2}\right)\right]_{0}^{2} \\
& =(\ln 3-\ln 1)-\left(\frac{1}{2} \ln 8-\frac{1}{2} \ln 4\right)+\left(\frac{1}{2} \tan ^{-1} 1-\frac{1}{2} \tan ^{-1} 0\right) \\
& =\frac{1}{2}(\ln 9-\ln 8+\ln 4)+\frac{1}{2} \times \frac{\pi}{4} \\
& =\frac{1}{2} \ln \left(\frac{9 \times 4}{8}\right)+\frac{\pi}{8} \\
& =\frac{1}{2} \ln \left(\frac{9}{2}\right)+\frac{\pi}{8}
\end{aligned}
\end{aligned}
$$

Example (2)

Find the indefinite integral of $\int \frac{4 x+1}{2 x^{3}+x^{2}} d x$

Solution
$\int \frac{4 x+1}{2 x^{3}+x^{2}} d x$
Breaking into partial fractions

$$
\frac{4 x+1}{2 x^{3}+x^{2}}=\frac{4 x+1}{x^{2}(2 x+1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{2 x+1}=\frac{A x(2 x+1)+B(2 x+1)+C x^{2}}{x^{2}(2 x+1)}
$$

Equating coefficients
$A x(2 x+1)+B(2 x+1)+C x^{2}=4 x+1$

$$
\begin{aligned}
& x=-\frac{1}{2} \Rightarrow \frac{1}{4} C=-1 \Rightarrow C=-4 \\
& x=0 \Rightarrow B=1 \\
& A+2 B=A+2=4 \Rightarrow A=2 \\
& \therefore \frac{4 x+1}{2 x^{3}+x^{2}}=\frac{2}{x}+\frac{1}{x^{2}}-\frac{4}{2 x+1} \\
& \int \frac{4 x+1}{2 x^{3}+x^{2}} d x=\int\left(\frac{2}{x}+\frac{1}{x^{2}}-\frac{4}{2 x+1}\right) d x \\
& =2 \int \frac{1}{x} d x+\int \frac{1}{x^{2}} d x-2 \int \frac{2}{2 x+1} d x=2 \ln |x|-\frac{1}{x}-2 \ln |2 x+1|+c
\end{aligned}
$$

Integrals with a variable limit

Consider an integral of the form
$\int_{0}^{x} f(t) d t$
The function is given as a function of one variable, here $f=f(t)$, and in the limit there is another variable. We are being asked to find the integral from 0 to x of the function $f=f(t)$. The result will be another function that depends on x. The x here represents a variable limit.

Example (4)

Find $\int_{2}^{x} \frac{3}{t^{2}-1} d t$. Evaluate this function when $x=5$.

Solution

$$
\begin{aligned}
\int_{2}^{x} \frac{3}{t^{2}-1} d t & =\int_{2}^{x} \frac{3}{2(t-1)}-\frac{3}{2(t+1)} d t \\
& =\left[\frac{3}{2} \ln |t-1|\right]_{2}^{x}-\left[\frac{3}{2} \ln |t+1|\right]_{2}^{x} \\
& =\left[\frac{3}{2} \ln \left|\frac{t-1}{t+1}\right|\right]_{2}^{x} \\
& =\frac{3}{2}\left(\ln \left|\frac{x-1}{x+1}\right|-\ln \left|\frac{2-1}{2+1}\right|\right) \\
& =\frac{3}{2}\left(\ln \left|\frac{x-1}{x+1}\right|-\ln \frac{1}{3}\right)
\end{aligned}
$$

Substituting $x=5$ we get

$$
\begin{aligned}
\int_{2}^{5} \frac{3}{t^{2}-1} d t & =\frac{3}{2}\left(\ln \left|\frac{5-1}{5+1}\right|-\ln \left|\frac{2-1}{2+1}\right|\right) \\
& =\frac{3}{2}\left(\ln \frac{4}{6}-\ln \frac{1}{3}\right) \\
& =\frac{3}{2} \ln 2 \\
& =1.04 \quad(2 \text { D.P. })
\end{aligned}
$$

Functions with variable limits frequently occur in the context of physics.

Example (4)

A particle Q is in situated in an electric field. The force acting on this particle is a function of the $r=$ the distance of the particle from the centre of the electric field, and is given by
$F=\frac{k}{r^{2}}$
where k is a constant. The work done on moving the particle from $r=a$ to $r=b$ is
$U=\int_{a}^{b} F d r$
Find the work done in terms of x when a particle is moved from $r=1$ to $r=x$.

Solution

$$
\begin{aligned}
U & =\int_{1}^{x} F d r \\
& =k \int_{1}^{x} r^{-2} d r \\
& =k\left[-r^{-1}\right]_{1}^{x}=k\left(-\frac{1}{x}+\left(\frac{1}{1}\right)\right)=k\left(1-\frac{1}{x}\right)=k\left(\frac{x-1}{x}\right)
\end{aligned}
$$

Example (5)

A force acting on a particle is given by the function

$$
f(y)=\frac{y}{1+y} d y
$$

The energy of this particle is
$U(x)=\int_{0}^{x} f(y) d y$
Find this energy as a function of x.
© blacksacademy.net

Solution

$$
\begin{aligned}
\int \frac{y}{1+y} d y & =\int \frac{1+y-1}{1+y} d y \\
& =\int\left(1-\frac{1}{1+y}\right) d y \\
& =\int 1 d y-\int \frac{1}{1+y} d y \\
& =y-\ln |1+y|+c
\end{aligned}
$$

Hence

$$
\begin{aligned}
U(x)-\int_{0}^{x} \frac{y}{1+y} d y & =[y-\ln |1+y|+c]_{0}^{x} \\
& =x-\ln |1-x|
\end{aligned}
$$

