Inverse Hyperbolic Functions

Inverse hyperbolic functions

In this chapter we will extend our knowledge of hyperbolic functions to include inverse hyperbolic functions. To have an inverse a function must be one-one.

sinh x

 $\sinh x$ is a one-one function and consequently has an inverse, $\sinh^{-1} x$, (also denoted as arcsinh *x*) defined on the whole of \mathbb{R} (its domain is the whole of \mathbb{R}).

cosh x

 $\cosh x$ is not a one-one function. Consequently, in order to define its inverse we must restrict its domain to a part where it is one-one. For this purpose we chose that part of the domain where *x* is positive $(x \in \mathbb{R} \text{ such that } x \ge 0)$. On this region, which we call the principal value, $\cosh x$ is increasing and hence has an inverse

$$\cosh^{-1} x = \begin{cases} (1,\infty) \to \mathbb{R}^+ \\ x \to \cosh^{-1} x \end{cases}$$

tanh *x* in an always increasing, one-one function, that is asymptotic to $y = \pm 1$. As $x \to +\infty$ tanh $x \to 1$ and as $x \to -\infty$ tanh $x \to -1$. So the inverse is only defined on the interval (-1,1).

 $\tanh^{-1} x = \begin{cases} (-1,1) \to \mathbb{R} \\ x \to \tanh^{-1} x \end{cases}$

The Logarithmic forms of the inverse hyperbolic functions

The inverse hyperbolic functions can be expressed in logarithmic form.

 $\sinh^{-1} x = \ln \left| x + \sqrt{x^2 + 1} \right|$

To show this, let $y = \sinh x$

Then

$$y = \frac{1}{2} (e^{x} - e^{-x})$$

$$2y = e^{x} - e^{-x}$$

$$e^{x} - 2y - e^{-x} = 0$$

$$e^{x} (e^{x} - 2y - e^{-x}) = 0$$

$$e^{2x} - 2ye^{x} - 1 = 0$$

Which is a quadratic in e^x hence

$$e^{x} = \frac{2y \pm \sqrt{4y^{2} + 4}}{2}$$

$$e^{x} = y \pm \sqrt{y^{2} + 1}$$

$$x = \ln \left| y \pm \sqrt{y^{2} + 1} \right|$$

$$f^{-1}(y) = \ln \left| y \pm \sqrt{y^{2} + 1} \right|$$
That is

$$f^{-1}(x) = \ln \left| x \pm \sqrt{x^2 + 1} \right|$$

We can show similarly that

 $\cosh^{-1} x = \ln |x + \sqrt{x^2 - 1}|, \ x \ge 1$ $\tanh^{-1} x = \frac{1}{2} \ln \left| \frac{1 + x}{1 - x} \right|, \ |x| < 1$

Derivatives of the inverse hyperbolic functions

We state and prove the forms for the derivatives of the inverse hyperbolic functions.

 $sinh^{-1}x$

$$\frac{d}{dx}\sinh^{-1}x = \frac{1}{\sqrt{1+x^2}}$$

Proof Let $y = \sinh^{-1} x$ Then by taking the inverse $x = \sinh y$ Then differentiating with respect to x: $\frac{d}{dx} \{x\} = \frac{d}{dx} \{\sinh y\}$ $\therefore 1 = \cosh y \cdot \frac{dy}{dx}$ by the chain rule $\therefore \frac{dy}{dx} = \frac{1}{\cosh y}$ Now $\cosh^2 y - \sinh^2 y = 1$ $\therefore \cosh y = \sqrt{1 + \sinh^2 y}$ But $\sinh y = x$; hence $\cosh y = \sqrt{1 + x^2}$ $\therefore \frac{dy}{dx} = \frac{1}{\sqrt{1 + x^2}}$ $\therefore \frac{d}{dx} \sinh^{-1} x = \frac{1}{\sqrt{1 + x^2}}$

 $\cosh^{-1}x$

$$\frac{d}{dx}\cosh^{-1}x = \frac{1}{\sqrt{x^2 - 1}}$$

Proof
Let
$$y = \cosh^{-1} x$$

Then $x = \cosh y$
 $\therefore \frac{dx}{dx} = \frac{d}{dx} \cosh y$
 $1 = \sinh y \cdot \frac{dy}{dx}$
 $\therefore \frac{dy}{dx} = \frac{1}{\sinh y}$
But $\sinh y = \sqrt{\cosh^2 y - 1} = \sqrt{x^2 - 1}$
 $\therefore \frac{d}{dx} \cosh^{-1} x = \frac{1}{\sqrt{x^2 - 1}}$

$$tanh^{-1}x$$

 $\frac{d}{dx}\tanh^{-1}x = \frac{1}{1-x^2}$

Proof

Let $y = \tanh^{-1} x$ Then $x = \tanh y$ \therefore On differentiating both sides with respect to x: $1 = \operatorname{sech}^2 y \cdot \frac{dy}{dx}$ $\therefore \frac{dy}{dx} = \frac{1}{\operatorname{sech}^2 y}$ Now $1 - \tanh^2 y = \operatorname{sech}^2 y$ $\therefore \operatorname{sech}^2 y = 1 - x^2$ $\therefore \frac{d}{dx} \tanh^{-1} x = \frac{1}{1 - x^2}$

