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Inverse Hyperbolic Functions 
 
 
 

Inverse hyperbolic functions 
   
In this chapter we will extend our knowledge of hyperbolic functions to include inverse hyperbolic 

functions.  To have an inverse a function must be one-one. 

 

sinh x 

sinh x  is a one-one function and consequently has an inverse, 1sinh x  , (also denoted as arcsinh 

x) defined on the whole of  (its domain is the whole of ).   
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cosh x 

cosh x  is not a one-one function. Consequently, in order to define its inverse we must restrict its 

domain to a part where it is one-one. For this purpose we chose that part of the domain where x is 

positive    such that 0x x . On this region, which we call the principal value, cosh x  is 

increasing and hence has an inverse 
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tanh x 

tanh x in an always increasing, one-one function, that is asymptotic to  1y .  As 

  tanh 1x x  and as    tanh 1x x .  So the inverse is only defined on the interval 

 1,1 .   
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The Logarithmic forms of the inverse hyperbolic functions 
 

The inverse hyperbolic functions can be expressed in logarithmic form. 

   1 2sinh ln 1x x x  

 

To show this, let  sinhy x  

Then 
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Which is a quadratic in xe  hence 
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That is 

    1 2ln 1f x x x  

 

We can show similarly that 
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Derivatives of the inverse hyperbolic functions 
 
We state and prove the forms for the derivatives of the inverse hyperbolic functions. 
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Proof 

Let  1sinhy x  

Then by taking the inverse 

 sinhx y  

Then differentiating with respect to x: 
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1cosh x  

 


1

2

1
cosh

1

d
x

dx x
 

 

Proof 




 

 

1Let cosh

Then cosh

cosh

1 sinh

y x

x y

dx d
y

dx dx
dy

y
dx

 

 
1

sinh

dy

dx y
 



   

 


2 2

1

2

But sinh cosh 1 1

1
cosh

1

y y x

d
x

dx x
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Proof 
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