Inverse Hyperbolic Functions

Inverse hyperbolic functions

In this chapter we will extend our knowledge of hyperbolic functions to include inverse hyperbolic functions. To have an inverse a function must be one-one.
$\sinh x$
$\sinh x$ is a one-one function and consequently has an inverse, $\sinh ^{-1} x$, (also denoted as arcsinh x) defined on the whole of \mathbb{R} (its domain is the whole of \mathbb{R}).

$\cosh x$
$\cosh x$ is not a one-one function. Consequently, in order to define its inverse we must restrict its domain to a part where it is one-one. For this purpose we chose that part of the domain where x is positive $(x \in \mathbb{R}$ such that $x \geq 0)$. On this region, which we call the principal value, $\cosh x$ is increasing and hence has an inverse
$\cosh ^{-1} x=\left\{\begin{array}{l}(1, \infty) \rightarrow \mathbb{R}^{+} \\ x \rightarrow \cosh ^{-1} x\end{array}\right\}$

$\tanh x$
tanh x in an always increasing, one-one function, that is asymptotic to $y= \pm 1$. As $x \rightarrow+\infty \tanh x \rightarrow 1$ and as $x \rightarrow-\infty \tanh x \rightarrow-1$. So the inverse is only defined on the interval $(-1,1)$.
$\tanh ^{-1} x=\left\{\begin{array}{l}(-1,1) \rightarrow \mathbb{R} \\ x \rightarrow \tanh ^{-1} x\end{array}\right\}$

© blacksacademy.net

The Logarithmic forms of the inverse hyperbolic functions

The inverse hyperbolic functions can be expressed in logarithmic form.
$\sinh ^{-1} x=\ln \left|x+\sqrt{x^{2}+1}\right|$

To show this, let $y=\sinh x$
Then

$$
\begin{aligned}
& y=\frac{1}{2}\left(e^{x}-e^{-x}\right) \\
& 2 y=e^{x}-e^{-x} \\
& e^{x}-2 y-e^{-x}=0 \\
& e^{x}\left(e^{x}-2 y-e^{-x}\right)=0 \\
& e^{2 x}-2 y e^{x}-1=0
\end{aligned}
$$

Which is a quadratic in e^{x} hence

$$
\begin{aligned}
& e^{x}=\frac{2 y \pm \sqrt{4 y^{2}+4}}{2} \\
& e^{x}=y \pm \sqrt{y^{2}+1} \\
& x=\ln \left|y \pm \sqrt{y^{2}+1}\right| \\
& f^{-1}(y)=\ln \left|y \pm \sqrt{y^{2}+1}\right|
\end{aligned}
$$

That is

$$
f^{-1}(x)=\ln \left|x \pm \sqrt{x^{2}+1}\right|
$$

We can show similarly that
$\cosh ^{-1} x=\ln \left|x+\sqrt{x^{2}-1}\right|, \quad x \geq 1$
$\tanh ^{-1} x=\frac{1}{2} \ln \left|\frac{1+x}{1-x}\right|,|x|<1$

Derivatives of the inverse hyperbolic functions

We state and prove the forms for the derivatives of the inverse hyperbolic functions.
$\sinh ^{-1} x$
$\frac{d}{d x} \sinh ^{-1} x=\frac{1}{\sqrt{1+x^{2}}}$

Proof
Let $y=\sinh ^{-1} x$
Then by taking the inverse
$x=\sinh y$
Then differentiating with respect to x :
$\frac{d}{d x}\{x\}=\frac{d}{d x}\{\sinh y\}$
$\therefore 1=\cosh y \cdot \frac{d y}{d x}$ by the chain rule
$\therefore \frac{d y}{d x}=\frac{1}{\cosh y}$
Now $\cosh ^{2} y-\sinh ^{2} y=1$
$\therefore \cosh y=\sqrt{1+\sinh ^{2} y}$
But $\sinh y=x$; hence
$\cosh y=\sqrt{1+x^{2}}$
$\therefore \frac{d y}{d x}=\frac{1}{\sqrt{1+x^{2}}}$
$\therefore \frac{d}{d x} \sinh ^{-1} x=\frac{1}{\sqrt{1+x^{2}}}$
$\cosh ^{-1} x$
$\frac{d}{d x} \cosh ^{-1} x=\frac{1}{\sqrt{x^{2}-1}}$

Proof
Let $y=\cosh ^{-1} x$
Then $x=\cosh y$
$\therefore \frac{d x}{d x}=\frac{d}{d x} \cosh y$
$1=\sinh y \cdot \frac{d y}{d x}$
$\therefore \frac{d y}{d x}=\frac{1}{\sinh y}$
But $\sinh y=\sqrt{\cosh ^{2} y-1}=\sqrt{x^{2}-1}$
$\therefore \frac{d}{d x} \cosh ^{-1} x=\frac{1}{\sqrt{x^{2}-1}}$
$\boldsymbol{\operatorname { t a n h }}^{-1} \boldsymbol{X}$
$\frac{d}{d x} \tanh ^{-1} x=\frac{1}{1-x^{2}}$

Proof
Let $y=\tanh ^{-1} x$
Then $x=\tanh y$
\therefore On differentiating both sides with respect to x :
$1=\operatorname{sech}^{2} y \cdot \frac{d y}{d x}$
$\therefore \frac{d y}{d x}=\frac{1}{\operatorname{sech}^{2} y}$
Now $1-\tanh ^{2} y=\operatorname{sech}^{2} y$
$\therefore \operatorname{sech}^{2} y=1-x^{2}$
$\therefore \frac{d}{d x} \tanh ^{-1} x=\frac{1}{1-x^{2}}$
© blacksacademy.net

