Lagrange's theorem

Lagrange's theorem relates the size of a subgroup of a group to the size of the group itself. It states that the order og a subgroup of a group must divide the order of the group. In more formal language

If G is a finite group and H is a subgroup of G, then the order of H divides the order of G.
In symbols
If H is a subgoup of the finite group G, then $|H \||G|$.

The symbol $|\mathrm{G}|$ stands for the order of the group G, which is the number of distinct elements in the group G.

Example (1)

A group, G, has order 10. Show that all its non-trivial subgroups are cyclic.

Solution

By Lagrange's theorem the order of the possible subgroups of G are 1, 2, 5 and 10. The non-trivial subgroups of G are 2 and 5 . Both 2 and 5 are prime numbers. All groups whose order is prime are cyclic. Therefore, all the nontrivial subgroups of G are cyclic.

Example (2)

Show that if G is a group with order p, where p is prime, then G cannot have any non-trivial subgroups.

Solution

By Lagrange's theorem, the order of a subgroup H of G must divide the order of G. Since p is prime, the only possible orders of H are 1 and p, which can not be orders of a proper subgroup of G. That is, there are no non-trivial subgroups of G.
© blacksacademy.net

Cosets and a Proof of Lagrange's Theorem

In order to prove Lagrange's theorem we need to define an object called a coset of H in G. We do this as follows

Let G be a group and H be a subgroup of G.
We write $H \leq G$ to signify that H is a subgroup of G.
For each element $g \in G$ and for each $h \in H$, form the element
$g h$
which is an element of G (by closure).

Let
$g H=\{g h: h \in H\}$

That is, let $g H$ represent the set of every element in G formed by taking a fixed element g of G and combining it systematically with every distinct element $h \in H$.

This set is called a (left) coset of H in G.

Each element $g \in G$ gives rise to a coset $g H$ in G.

Example (3)

Let S_{3} denote the group of permutations of $\{1,2,3\}$. Let H be the subgroup consisting of the permutations

$$
\begin{aligned}
& e=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right) \\
& p=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)
\end{aligned}
$$

Find all the cosets of H in S_{3}.

Solution
© blacksacademy.net

The elements of S_{3} are

$$
\begin{array}{ll}
e=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right) & \text { identity } \\
a=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) & \text { cyclic permutation } \\
b=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) & \text { cyclic permutation } \\
p=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) & \text { swops } 2 \text { and } 3 \\
q=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) & \text { swops } 1 \text { and } 2 \\
q=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) & \text { swops } 1 \text { and } 2
\end{array}
$$

The group table for this group is

	e	a	b	p	q	r
e	e	a	b	p	q	r
a	a	b	e	q	r	p
b	b	e	a	r	p	q
p	p	r	q	e	b	a
q	q	p	r	a	e	b
r	r	q	p	b	a	e

To illustrate the construction of this table, consider the element $p b$. This means b followed by p. Under b
© blacksacademy.net

$$
\begin{aligned}
& 1 \longrightarrow 3 \\
& 2 \longrightarrow 1 \\
& 3 \longrightarrow 2 \\
& \text { Under } p \\
& 1 \longrightarrow 1 \\
& 2 \longrightarrow 3 \\
& 3 \longrightarrow 2
\end{aligned}
$$

Therefore, for $p b$ we have
$1 \xrightarrow{b} 3 \xrightarrow{p} 2$
$2 \xrightarrow{b} 1 \xrightarrow{p} 1$
$3 \xrightarrow{b} 2 \xrightarrow{p} 3$
That is
$\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right)$
which is q. That is
$q=p b$
The other entries are found similarly.
Now we find the cosets of H in S_{3}.
We have
$g H=\{g h: h \in H\}$ for all $g \in G$
and
$H=\{e, p\}$

For e

$$
e H=\{e e, e p\}=\{e, p\}=H
$$

For $a \quad a H=\{a e, a p\}=\{a, q\}$
For $b \quad b H=\{b e, b p\}=\{b, r\}$
For $p \quad p H=\{p e, p p\}=\{p, e\}$
For $q \quad q H=\{q e, q p\}=\{q, a\}$
For $r \quad r H=\{r e, r p\}=\{r, b\}$
Since
$\{\mathrm{a}, \mathrm{q}\}=\{q, a\}$
and
$\{b, r\}=\{r, b\}$
we have just three cosets of H in S_{3} :
$H=\{e, p\}$
$L=\{a, q\}$
$M=\{b, r\}$
This illustrates that if x, y are distinct elements of G and H is a subgroup of G, then the cosets $x H$ and $y H$ are not necessarily distinct. We need a criterion for demonstrating when $x H=y H$.

This is given by,
if $x^{-1} y \in H$ then $x H=y H$
An equivalent to this is given by
if $y^{-1} x \in H$ then $x H=y H$
We will firstly show that
if $x^{-1} y \in H$ then $y^{-1} x \in H$
Let $x^{-1} y \in H$
then $\left(x^{-1} y\right)^{-1} \in H \quad$ (by the existence of inverses, since H is a group)
then $y^{-1}\left(x^{-1}\right)^{-1} \in H$
then $y^{-1} x \in H$

We will also illustrate the meaning of this criterion for deciding when two cosets of a group are identical by looking again at our example.

Here,
$a H=\{a e, a p\}=\left\{a, a a^{-1} q\right\}=\{a, q\}$
$q H=\{q e, a p\}=\left\{q, q q^{-1} a\right\}=\{q, a\}$

The two cosets are identical because we can replace p by $a^{-1} q$ since $p=a^{-1} q$ in the first case, and p by $q^{-1} a$ since $p=q^{-1} a$ in the second case. This illustrates that if $x^{-1} y \in H$ then $x H=y H$.

We will now prove in general that
if $x^{-1} y \in H$ then $x H=y H$
Suppose $f \in x H$
then $f=x h$ for some $h \in H$
then $f=y y^{-1} x h$
but $y^{-1} x \in H$
that is $h^{\prime}=y^{-1} x$
Therefore, $f=y h^{\prime} h$, where $h, h^{\prime} \in H$
Therefore, $f \in y H$
Likewise, if $f \in y H$
then $f=y h, h \in H$
$f=x x^{-1} y h=x h^{\prime \prime} h$, where $h, h^{\prime \prime} \in H$
Therefore, $f \in x H$
This shows that if $x^{-1} y \in H$ then $x H \subseteq y H$ and $y H \subseteq x H$
Therefore, $x H=y H$.
The cosets of H in G form a partition of G. What this means is that if two cosets of H in G are not identical then they do not share any element in common. The proof of this is by contradiction. Thus, suppose
$x H \neq y H$
are two cosets of H in G, but that they share at least one element in common. Let this common element be t. That is
$t \in x H$ and $t \in y H$

Therefore,
$t=x h$ and $t=y h^{\prime}$, where $h, h^{\prime} \in H$.
Therefore,
$x h=y h^{\prime}$
$x h\left(h^{\prime}\right)^{-1}=y$
$h\left(h^{\prime}\right)^{-1}=x^{-1} y$
That is,
$x^{-1} y=h\left(h^{\prime}\right)^{-1}$
Therefore,
$x^{-1} y \in H$ since $h\left(h^{\prime}\right)^{-1} \in H$
But we just showed that if $x^{-1} y \in H$ then $x H=y H$.

Hence, $x H=y H$
which contradicts $x H \neq y H$.
Thus, if two cosets of H in G share an element in common, then they must be completely identical. Hence, the cosets of H in G partition G. This means that every element of G is in one, and only one, coset of H in G.

The number of elements of each coset of H in G is the same. That is,
if $x H$ is a coset of H in G then
$|x H|=|H|$
Their orders are the same.
This is because each coset is formed by taking an element g of G and combining it with each distinct element h of H. For each distinct h in H we get a different element $g h$ in G. Indeed, if $g^{-1}(g h)=g^{-1}\left(g h^{\prime}\right)$ then $g h=g h^{\prime}$ and thus $h=h^{\prime}$ follows. Hence, there is a one-one correspondence between elements of H and elements of any coset $x H$ of H in G.
© blacksacademy.net

Further, G is divided into a finite number of cosets $x H$ of H in G.
Thus,
$|G|=($ the number of cosets of H in $G) \times|H|$
(The order of G is equal to the product of the number of cosets of H in G, and the order of H.)

That is,
$|H \||G|$
The order of H divides the order of G, which proves the theorem.
In summary, the outline of the proof is as follows
Let H be a subgroup of G. That is $H \leq G$
Then the cosets of H in G partition (divide up) G in such a way that
(1) each coset has exactly the same number of distinct elements as H.
(2) every element of G is in one and only one coset of H.

Hence,
$|G|=($ the number of cosets of H in $G) \times|H|$
(The order of G is equal to the product of the number of cosets of H in G, and the order of H.)
which means that the order of any subgroup of G must divide the order of G.
© blacksacademy.net

