Lagrange's theorem

Lagrange's theorem relates the size of a subgroup of a group to the size of the group itself. It states that the order og a subgroup of a group must divide the order of the group. In more formal language

If G is a finite group and H is a subgroup of G, then the order of H divides the order of G.

In symbols

If H is a subgoup of the finite group G, then |H||G|.

The symbol |G| stands for the order of the group G, which is the number of distinct elements in the group G.

Example (1)

A group, G, has order 10. Show that all its non-trivial subgroups are cyclic.

Solution

By Lagrange's theorem the order of the possible subgroups of G are 1, 2, 5 and 10. The non-trivial subgroups of G are 2 and 5. Both 2 and 5 are prime numbers. All groups whose order is prime are cyclic. Therefore, all the nontrivial subgroups of G are cyclic.

Example (2)

Show that if G is a group with order p, where p is prime, then G cannot have any non-trivial subgroups.

Solution

By Lagrange's theorem, the order of a subgroup H of G must divide the order of G. Since p is prime, the only possible orders of H are 1 and p, which can not be orders of a proper subgroup of G. That is, there are no non-trivial subgroups of G.

Cosets and a Proof of Lagrange's Theorem

In order to prove Lagrange's theorem we need to define an object called a coset of H in G. We do this as follows

Let G be a group and H be a subgroup of G.

We write $H \leq G$ to signify that *H* is a subgroup of *G*.

For each element $g \in G$ and for each $h \in H$, form the element

gh

which is an element of G (by closure).

Let

 $gH = \{gh : h \in H\}$

That is, let gH represent the set of every element in G formed by taking a fixed element g of G and combining it systematically with every distinct element $h \in H$.

This set is called a (left) coset of H in G.

Each element $g \in G$ gives rise to a coset gH in G.

Example (3)

Let S_3 denote the group of permutations of $\{1,2,3\}$. Let *H* be the subgroup consisting of the permutations

$$e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$
$$p = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

Find all the cosets of H in S_3 .

Solution

The elements of S_3 are

identity
cyclic permutation
cyclic permutation
swops 2 and 3
swops 1 and 2
swops 1 and 2

The group table for this group is

	е	a b e r p q	b	р	q	r
е	е	а	b	р	q	r
а	а	b	е	q	r	р
b	b	е	а	r	р	q
р	р	r	q	е	b	а
q	q	р	r	а	е	b
r	r	q	р	b	а	е

To illustrate the construction of this table, consider the element pb. This means b followed by p. Under b

 $1 \longrightarrow 3$ $2 \longrightarrow 1$ $3 \longrightarrow 2$ Under p $1 \longrightarrow 1$ $2 \longrightarrow 3$ $3 \longrightarrow 2$

Therefore, for pb we have

$$1 \xrightarrow{b} 3 \xrightarrow{p} 2$$

$$2 \xrightarrow{b} 1 \xrightarrow{p} 1$$

$$3 \xrightarrow{b} 2 \xrightarrow{p} 3$$

That is

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

which is q. That is

q = pb

The other entries are found similarly.

Now we find the cosets of H in S_3 .

We have

 $gH = \{gh : h \in H\}$ for all $g \in G$

and

$$H = \{e, p\}$$

For
$$e$$
 $eH = \{ee, ep\} = \{e, p\} = H$ For a $aH = \{ae, ap\} = \{a, q\}$ For b $bH = \{be, bp\} = \{b, r\}$ For p $pH = \{pe, pp\} = \{p, e\}$ For q $qH = \{qe, qp\} = \{q, a\}$ For r $rH = \{re, rp\} = \{r, b\}$

Since $\{a,q\} = \{q,a\}$ and $\{b,r\} = \{r,b\}$ we have just three cosets of H in S_3 : $H = \{e, p\}$ $L = \{a,q\}$ $M = \{b,r\}$

This illustrates that if x, y are distinct elements of G and H is a subgroup of G, then the cosets xH and yH are not necessarily distinct. We need a criterion for demonstrating when xH = yH.

This is given by, if $x^{-1}y \in H$ then xH = yH

An equivalent to this is given by

if $y^{-1}x \in H$ then xH = yH

We will firstly show that

if $x^{-1}y \in H$ then $y^{-1}x \in H$

Let $x^{-1}y \in H$ then $(x^{-1}y)^{-1} \in H$ (by the existence of inverses, since H is a group) then $y^{-1}(x^{-1})^{-1} \in H$ then $y^{-1}x \in H$

We will also illustrate the meaning of this criterion for deciding when two cosets of a group are identical by looking again at our example.

Here,

$$aH = \{ae, ap\} = \{a, aa^{-1}q\} = \{a, q\}$$
$$qH = \{qe, ap\} = \{q, qq^{-1}a\} = \{q, a\}$$

The two cosets are identical because we can replace p by $a^{-1}q$ since $p = a^{-1}q$ in the first case, and p by $q^{-1}a$ since $p = q^{-1}a$ in the second case. This illustrates that if $x^{-1}y \in H$ then xH = yH.

We will now prove in general that

```
if x^{-1}y \in H then xH = yH

Suppose f \in xH

then f = xh for some h \in H

then f = yy^{-1}xh

but y^{-1}x \in H

that is h' = y^{-1}x

Therefore, f = yh'h, where h, h' \in H

Therefore, f \in yH
```

Likewise, if $f \in yH$ then f = yh, $h \in H$ $f = xx^{-1}yh = xh''h$, where $h, h'' \in H$ Therefore, $f \in xH$

This shows that if $x^{-1}y \in H$ then $xH \subseteq yH$ and $yH \subseteq xH$ Therefore, xH = yH.

The cosets of H in G form a partition of G. What this means is that if two cosets of H in G are not identical then they do not share any element in common. The proof of this is by contradiction. Thus, suppose

 $xH \neq yH$

are two cosets of H in G, but that they share at least one element in common. Let this common element be t. That is

 $t \in xH$ and $t \in yH$

Therefore,

t = xh and t = yh', where $h, h' \in H$.

Therefore,

xh = yh' $xh(h')^{-1} = y$ $h(h')^{-1} = x^{-1}y$ That is, $x^{-1}y = h(h')^{-1}$ Therefore, $x^{-1}y \in H \text{ since } h(h')^{-1} \in H$

But we just showed that if $x^{-1}y \in H$ then xH = yH.

Hence, xH = yHwhich contradicts $xH \neq yH$.

Thus, if two cosets of H in G share an element in common, then they must be completely identical. Hence, the cosets of H in G partition G. This means that every element of G is in one, and only one, coset of H in G.

The number of elements of each coset of H in G is the same. That is,

if *xH* is a coset of *H* in *G* then |xH| = |H|Their orders are the same

Their orders are the same.

This is because each coset is formed by taking an element g of G and combining it with each distinct element h of H. For each distinct h in H we get a different element gh in G. Indeed, if $g^{-1}(gh) = g^{-1}(gh')$ then gh = gh' and thus h = h' follows. Hence, there is a one-one correspondence between elements of H and elements of any coset xH of H in G.

Further, G is divided into a finite number of cosets xH of H in G.

Thus,

|G| = (the number of cosets of H in $G) \times |H|$

(The order of G is equal to the product of the number of cosets of H in G, and the order of H.)

That is,

|H||G|

The order of H divides the order of G, which proves the theorem.

In summary, the outline of the proof is as follows

Let *H* be a subgroup of *G*. That is $H \leq G$

Then the cosets of H in G partition (divide up) G in such a way that

(1) each coset has exactly the same number of distinct elements as *H*.(2) every element of *G* is in one and only one coset of *H*.

Hence,

|G| = (the number of cosets of H in $G) \times |H|$

(The order of G is equal to the product of the number of cosets of H in G, and the order of H.)

which means that the order of any subgroup of G must divide the order of G.

