## Linear Inequalities

## Prerequisites

You should already be aware that a linear expression in $x$ is a polynomial that has no term with a power higher than $x$. Thus $2 x$ and $x-2$ are examples of linear expressions. You should have already met the symbols $>\geq<\leq$ to express the following relationships.
$>$ means "greater than"
$\geq$ means "greater than or equal to"
< means "less than"
$\leq$ means "less than or equal to"
The expression $3>-1$ is read, " 3 is greater than -1 " and the expression $1 \leq 1$ is read, " 1 is less than or equal to 1 ". Whereas a linear equation uses the equals sign to express an exact relationship between numbers, a linear inequality uses the symbols $>\geq<\leq$ to express an inexact relationship. In the expression $x>-1$ the relationship is inexact because there are many numbers that satisfy this relationship, and this expression does not determine an exact number $x$.

## Solving linear inequalities

An example of a linear inequality is $2 x+1>3 x-2$. Linear inequalities are solved by the same algebraic manipulations required to solve a linear equation, except that when multiplying or dividing by -1 (or any negative number), then you must reverse the sign of the inequality.

## Example (1)

Solve the linear inequality $2 x>3 x-2$.

Solution

$$
\begin{aligned}
& 2 x>3 x-2 \\
& -x>-2 \\
& x<2
\end{aligned}
$$

In the last line of this example the sign of the inequality was reversed when both sides were multiplied by -1 . This is really the only difference between the algebra of linear equalities and inequalities.

## Example (2)

Solve the linear inequality $\frac{x+1}{4}-\frac{3 x+1}{2}>\frac{x-1}{3}$.
Solution
$\frac{x+1}{4}-\frac{3 x+1}{2}>\frac{x-1}{3}$
$3(x+1)-6(3 x+1)>4(x-1)$
$3 x+3-18 x-6>4 x-4$
$-19 x>-1$
$x<\frac{1}{19}$

The solution to this problem differs from the solution to a linear equation occurs at the last stage when we divide both sides by -19 , at which point we reverse the sign of the inequality.

## Graphing linear inequalities (optional)

The solution to a linear equation can be presented as a segment of a straight line.

## Example (3)

Sketch the graph of $x<2$ as a segment of a straight line.

Solution


This graph employs the following convention - a circle that has not been filled in represents a number that is not included in the solution set. Thus every number below 2 is a solution to the equation $x<2$ but 2 is not. To avoid confusion here the line representing the solution is drawn just above the line representing the set of all real numbers, positive and negative. The solution to $x \leq 2$ would be represented by the following diagram.


The difference here is that the circle has been filled in to indicate that the number 2 is a solution to $x \leq 2$ as well as all the numbers below 2 .

## Example (4)

Sketch the set $-1 \leq x<3$

Solution


There is a second way of representing sets of numbers corresponding to linear equalities. This involves the use of brackets to represent the interval.

The set $x<2$ is represented by $(-\infty, 2)$.
The set $x \leq 2$ is represented by $(-\infty, 2]$.
The set $-1 \leq x<3$ is represented by $[-1,3)$.
These employ the convention that a curved bracket is used when a point is not included in the solution set, and a square bracket is used when a point is included in the set. The symbols $-\infty$ and $+\infty$ stand for infinity and represent the idea that the line could be continued indefinitely. As infinity is not a number it cannot be included in a solution set, so a curved bracket always goes beside it. The symbol $(-\infty,+\infty)$ represents the whole real line. The symbols $\infty$ and $+\infty$ are interchangeable. The symbol $+\infty$ is used only when one needs to emphasise that the positive end of the real line is intended.

