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Mathematical Induction 
 
 
 

Prerequisites 
 

You should be familiar with the summation notation and the method of summing finite series 

using standard results.  We remind you, however, that a series is an expression of the form 


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For example, iu i  
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S i n  

Mathematical induction is a unique process of mathematical thinking and is a form of proof.  In 

mathematical induction we prove the validity of a general proposition from just two statements.  

In other words, it is a form of reasoning that enables the mathematician to draw conclusions 

about infinite series from finite reasoning.  So it has to be special! A general proposition is a 

statement that applies to all numbers. The general proposition is usually guessed at, in the first 

instance, by trial and error, leading to a conjecture.  So firstly, we illustrate how a conjecture 

might arise. 

 

 

Number patterns and conjectures 
 

Consider the following diagrams representing a sequence of numbers. 

 

1 3 6 10  

 

It is clear that the sequence of numbers could be continued indefinitely.  The sequence is a 

mapping from the nth number to the nth value of the number. 
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




1 1

2 3

3 6

4 10

 

The question is: what does n map to and how might this nth value be shown to be the nth value 

for certain?  The diagram above indicates that 


  
   
    

1 1

2 1 2 3

3 1 2 3 6

4 1 2 3 4 10

 

Hence the nth term in the series is 


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n
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This is "the sum of the n terms from 1 to n." The triangular representation indicates how we arrive 

at a conjecture of what this sum might be. For example, for n = 4, suppose we make a copy of the 

triangle and join the two triangles together: 

5

Copy Join

4
 

The result is a 4 5  rectangle.  This rectangle is twice the size of the 4th triangle. This suggests the 

conjecture that the nth triangle is half the size of the   1n n th rectangle 

CONJECTURE 

 
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Towards proving a conjecture 
 

The process of constructing triangular numbers might suggest that we have proven this 

conjecture – for surely we just see that this process of constructing a rectangle out of two 

triangles could be carried on for ever – and hence applies to any triangular number?  

Mathematical induction is a process that formalises this argument. However, let us dwell for a 

moment on why we have not strictly proven the result. This is because we have so far examined 

only one particular triangle – the triangle corresponding to the 4th triangular number. We have not 

actually examined every triangle and consequently we do not know that the result is true for every 

triangle.  Now we proceed to express more explicitly the intuition upon which is based our gut 
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feeling that we have proven the result. This intuition comes from the insight that we could 

construct a triangle for any number, k; copy it, join the two triangles together and form a   1k k  

rectangle.  For example, from the rectangle for 4k  , we can construct the rectangle for 5k  . 

5

4 5

6  

This is done by adding 5 dots to each triangle.  Here for  4k  the rectangle was of size 4 5  or 

that is   1k k .  After adding 5 dots to each rectangle, or  1k  dots, we obtained the rectangle 

for  5k , which is of size 5 6  or     1 2k k .  Writing this all in terms of k, for the kth 

rectangle the size is   1k k , then by adding  1k  to each side we obtain the k+1th rectangle of 

size     1 2k k . 

k

k + 1

k + 2

k + 1
k

k + 1

Add one column 
and one row

 

If the size of the kth rectangle is   1k k  then the size of the k+1th rectangle is     1 2k k .  

This type of argument is expressed in mathematical induction as the induction step.  It is an 

argument to show that assuming the result is true for the kth number then the result is true for 

the (k +1)th number.   The induction statement is a conditional statement – it says: "If___ then___."  

Another example of a conditional statement is the sentence, "If I have my umbrella then it is 

raining" But, if true, this does not prove that I have my umbrella; nor does it prove that it is 

raining.  I need two statements, in such a case, to prove that it is raining. 

 

If I have my umbrella then it is raining. 

I have my umbrella. 

Therefore, it is raining. 
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Formally 

If  then 

              

A B

A

B

 

The line here is the way of marking the process of drawing an inference, and is equivalent to 

“therefore”, “hence” or “thus”.  

 

 

Proof by mathematical induction 
 

Likewise, proof by MATHEMATICAL INDUCTION is a two-step argument. 

 

Induction Step 

If the result is true for the kth number then the result is true for the (k+1)th number. 

 

Particular Result 

The result is true for n = 1 (or for some other starting value). 

 

From which the inference can be drawn: 

 

 Conclusion 

The result is true for all n (or for all n greater than the starting value). 

 

We now illustrate this unique form of argument by proving 

 


 
1

1
1

2

n

i

i n n  

Note, it is customary to prove the particular result first. 

 

Example (1) 

Prove  


 
1

1
1

2

n

i

i n n  

 

Proof 

 

Step 1: Particular result 

Let n = 1 

Then LHS = 



1

1

1
i

 



 
 

© blacksacademy.net 
 

5 

         
1 1

RHS= 1 1 1 1 2 1
2 2

 

LHS = RHS 

Hence, the result holds for n = 1 

 

Step 2: Induction Step 

Assuming the result holds for n = k. 

i.e. supposing  


 
1

1
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2
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i k k  

To show that the result holds for n =k + 1 
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Now 
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     

 

   
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k k k
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k k

 

The step marked (*) is the crucial one in the proof.  At that step we have replaced 



1

k

i

i  

using the induction hypothesis  

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1

1
1

2

k

i

i k k . 

 

Step 3: Conclusion 

The result holds, by mathematical induction, for all n. That is 

 

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1
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n

i

i n n  

 

The general form of the proof is as follows 

 

Step 1: Particular Result 

Proof of the particular result by showing LHS = RHS for n = 1 (or for some other natural 

number). 

 

Step 2: Induction Step 

Suppose the result is true for n = k and call this the induction hypothesis.  Then write the 

result for n = k +1 and split this into two parts.  For example 
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

 

  
1

1 1

k k

i i

P P Q  

Then substitute the induction hypothesis for P and by doing some algebra (or something) 

prove the result for k + 1. 

 

Step 3: Conclusion 

The result holds, by mathematical induction, for all n. 

 

 

From the finite to the infinite 
 

Let us take some time out to explain again why mathematical induction enables one to make 

conclusions about infinite series from only two starting statements.  Mathematical induction has 

been likened to climbing up a ladder. The steps of the ladder correspond to numbers. 

 

First step

Second step

Third step

Fourth step

kth step

k + 1th step

n = 1

n = 2

n = 3

n = 4

n = k

n = k+1

 

 

The induction step is equivalent to saying: If I am on the kth step then I can climb to the (k +1)th 

step.  Likening mathematical induction to climbing up a ladder illustrates two points. 

 

First Point 

In order to know that I can climb the ladder, I must know that I can get onto the ladder in the first 

place. Look at the cartoon that follows!  If Romeo was on the kth rung of the ladder, then he could 

reach the (k + 1)th rung.  But he cannot reach the beginning of the ladder.  Therefore, he cannot 

climb the ladder.  Therefore, he cannot reach Juliet. 



 
 

© blacksacademy.net 
 

7 

 

K
K + 1

 

 

 

Second Point 

If both the particular and the induction steps hold then the MATHEMATICAL INDUCTION entitles 

us to make a statement that is true for all numbers. In other words mathematical induction 

enables one to proceed from the PARTICULAR to the INFINITE.   We now illustrate the method of 

mathematical induction with a further example. 
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Example (2) 

Prove: 
    

   2 2 2 1 2 1
1 2 ...

6

n n n
n  

 Proof 

 
   



 
 2

1

1 2 1
To prove 

6

n

i

n n n
i  

 

Particular Step 

   


  

    
   


1

2

1

For 1 :   LHS 1

1 1 1 2 1 1 1 2 3
RHS 1 LHS

6 6

i

n i

 

Hence the result holds for n = 1. 

 

Induction Step 

   

            







 


   
    





2

1

1
2

1

1 2 1
Suppose 

6

This is the induction hypothesis, and we can use this statement at any stage in

the proof.

1 2 2 1 1 1
To prove 1 2 2 3

6 6

It helps to write out what you are trying

k

i

k

i

k k k
i

k k k
i k k k


 to prove.  This has been obtained from 

the induction hypothesis by replacing  by 1.  Clearly, we have to prove this

from the assumption that the induction hypothesis is true and with the help of

the

k k

 rules of algebra.

 

 

     

      
   

   

     



 

  

 
  


   


   

   

   

 
1

22 2

1 1

2

2

2

1

1 2 1
1 [by the induction hypothesis]

6
1

2 1 6 1
6

1
2 6 6

6
1

1 2 7 6
6
1

1 2 2 3  [Which is what we wanted to show]
6

k k

i i

i i k

k k k
k

k
k k k

k
k k k

k k k

k k k

 

 

Conclusion 

The induction step holds and the result is true, by mathematical induction for all n. 
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Mathematical induction and rules for divisibility 
 

We can prove that certain general number formulae are divisible by other numbers using 

mathematical induction. 

 
Example 
 

3Prove that 5  is divisible by 6 for all .n n n  

 

 Proof 

Let us use the symbol | to mean “divides into”.  For example 6 | 36 is read “6 divides into 

36” or “36 is divisible by 6”.  [This is standard notation in number theory.] 

For the particular result, when n = 1 

3 5 1 6 6

6 6

n n   
 

so the result is true for n = 1. 

For the induction step assume that the result is true for n = k.  That is 

 36 5k k  

We have to show 

    3
6 1 5 1k k    

 Now 

   

   

        

    

    

3 3 2

3 2

3 2

1 5 1 3 3 1 5 5

5 3 3 6

5 3 6

k k k k k k

k k k k

k k k k

 

 
 

 



   

   

 

2

2 2

2 2

2

If  is an odd number then is even (as the sum of two odd numbers), 

then 6 is even and 6 3 6 .

If  is an even number then 6 is even, and 6 3 6 .

In either case 6 3 6 .

By the inducti

k k k

k k k k

k k k k k

k k

 
    



   



3

3 2

on hypothesis 6 5 , so 

6 5 3 6

since 6 divides both halves separately.  Thus the result is true for 1 and the

induction step holds.

k k

k k k k

k

 

Hence, by mathematical induction 3 5  is divisible by 6 for all n n n  
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Mathematical induction everywhere 
 

Mathematical induction crops up everywhere.  It is used, for example, to prove the rule for 

differentiation 

 1n nd
x nx

dx
 

and many other rules.  It is also used to prove results about matrices.  The Binomial theorem is 

proven by mathematical induction.  As regards mathematical induction, no new theory is 

required, but as these we have not stated knowledge of the calculus or matrices as prerequisites 

of this chapter, we reserve their introduction to later chapters. 

 


