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Minimum connector problem 
 
The minimum connector of a network 
 
A graph is a collection of vertices (also called nodes) and edges (also called arcs) 
which join vertices to one another.  When these edges also carry a number (a weight), 
the graph is called a weighted graph.  The edges can also be directed – in other words, 
represent a route from, say, vertex A to B, but not from B to A.  A directed graph is 
also called a digraph.   
 
A network is a weighted graph or weighted digraph.  In this unit we consider only 
networks that are weighted graphs.  We also only consider graphs that are fully 
connected – in other words, graphs where every vertex is connected to every other by 
some path or other. 
 
Graphs can be used to represent (or model) many practical situations.  For example, a 
network could show the possible connections between pumping stations in a projected 
water main system, and the weights along the edges could indicate the costs in £1000s 
of installing those connections. 
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One practical question could be: given that no two pumping stations need to be 
connected more than once, and that every pumping station must be connected to every 
other, not necessarily directly, what is the least cost of installing the network? 
 
An answer to this questions requires one to find the minimum connector – also called 
the minimum spanning tree or minimum weight spanning tree. 
 
A spanning tree is a weighted graph that connects all the vertices of the graph to one 
another, either directly or through other vertices, such that no vertex is connected to 
the graph more than once.   
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A minimum connected is a spanning tree that has the least total weight.  In other 
words, it is a minimum connector is a weighted graph (or digraph) in which all the 
vertices are connected to all the others either directly or through other vertices, and 
which has the least weight possible. 
 
A solution to this problem is 
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There can be more than one solution to such a problem, since there can be sometimes 
more than one way to construct a minimum connector.  For example, in this case the 
vertex D can be connected to the tree by the edge DG, as above, or by the edge ED, 
since both edges have the same weight, and there is no edge connecting D to the tree 
which has a lower weight. 
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The problem of finding a minimum connector, (or minimum spanning tree), is one 
that should be programmable – in other words, there should be an algorithm for 
finding such a tree. 
 
This is indeed the case. 
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The algorithms that find the minimum connector are called greedy algorithms.  The 
thinking behind this term is that in finding the minimum connector you choose the 
easiest path.  Since you are trying to link nodes in the shortest possible way, or 
costing the least money, it is jokingly thought that this is “greedy”. 
 
There are two main greedy algorithms used for solving the minimum connector 
problem.  These are Prim’s algorithm and Kruskal’s algorithm. 
 
Before we describe these algorithms, we note the following theorem: 
 

Theorem 
 
If a network has n vertices, then there are n  1 edges in any spanning tree. 

 
The proof of this theorem would be an easy application of the technique of 
mathematical induction.  However, here we only explain it. 
 
If we have two vertices, then we require only one edge to connect them. 
 

 
 
So there are 2 vertices and 1 edge. 
 
If we then add one more vertex, we require one more edge to connect that vertex to 
the existing tree.  This edge could connect the vertex to the tree in one of two ways, 
but there will be just one edge required. 
 

 
 
So there would be 3 vertices and 2 edges – or n vertices and n  1 edges.  In general, 
adding one vertex adds one edge, and as we started with one less edge than vertices, 
we have one less edge in all. 
 
Prim’s algorithm 
 
STEP 1 Choose any vertex to be the starting point of the spanning tree, T. 
 
STEP 2 Add to the tree, T, the shortest edge that has one vertex in T and the 

other vertex not in T.  If there is a choice of two or more such edges, 
choose one of them at random. 
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STEP 3 Repeat step 2 until all the vertices of the graph are added.  This means 
that there will be n  1 edges, so this step could also be written: repeat 
step 2 until there are n  1 edges in the tree. 

 
It is a theorem that this algorithm does indeed find the minimum connector.  One 
proof of such a theorem could be by contradiction.  In other words, you would start by 
assuming that there was a minimum connector of a network, but that Prim’s algorithm 
did not find it, and then show that this lead to a contradiction. 
 
Prim’s algorithm is best illustrated by worked examples. 

 
Example (1) 
 
In the following network the weights along the edges represent distances in 
kilometres between towns. 
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Using Prim’s algorithm find a minimum spanning tree. 
 
Solution 
 
We can choose any vertex as the starting point of the minimum spanning tree, 
so let us choose vertex A.  We add to the vertex A the shortest edge that is 
connected to A.  This is the edge AC with length 2. 
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The tree T consists of just the edge AC.  We add to T the shortest remaining 
edge that connects with T.  This is the edge, AB.  The tree becomes 
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We iterate (repeat) this process until all the vertices are connected.  The next 
step is 
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The end result is 
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With length 
 
length = 3 2 3 4 2 1 2 3 20km         

 
Matrix representation of Prim’s algorithm 
 
A matrix is a rectangular array of numbers. 
 
We require a matrix representation of Prim’s algorithm.  Once we have the matrix, we 
can use operations on the matrix to find the minimum connector. 
 
Such operations would be suitable for programming for a computer, which is one 
reason why we are interested in a matrix representation. 
 

Example (2) 
 
The following weighted graph shows the costs in £1000 of connecting five 
towns telephone cables.  Using Prim’s algorithm in matrix form, find a 
minimum spanning tree for the telephone network, and its cost. 
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Solution 
 
Firstly, we have to construct the matrix representation of the weighted graph.  
This is 

A B C D E

A - 7 11 6 16

B 7 - 12 9 6

C 11 12 - 10 5

D 6 9 10 - 4

E 16 6 5 4 -

From

To

 
 
The matrix shows the weight of connecting one vertex to another.  The row represents 
the starting vertex; the column the ending vertex.  Thus the edge connecting C to D is 
shown by the entries in the matrix 
 

A B C D E

A - 7 11 6 16

B 7 - 12 9 6

C 11 12 - 10 5

D 6 9 10 - 4

E 16 6 5 4 -

From

To

 
 
There are two entries in the matrix for this one edge.  This is because the edge from C 
to D is the same as the edge from D to C.   In a directed graph (a digraph) the entries 
could be different, because the edge from C to D could have a different weight from 
the edge running in the opposite direction from D to C.  However, here we are not 
concerned with directed graphs. 
 

In Prim’s algorithm we start with any randomly chosen vertex, so we may as 
well start with A.  We chose the shortest edge in the row, which is the edge 
AD with length 6.   
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A B C D E

A - 7 11 6 16

B 7 - 12 9 6

C 11 12 - 10 5

D 6 9 10 - 4

E 16 6 5 4 -

From

To
Tree     Length
AD       6

 
 
This connects A and D to the tree so we delete columns A and D to indicate 
that they are now connected to the tree.  On the other hand, since only A and 
D are connected to the tree, only rows A and D can be used for further 
connections. 
 

From

To
Tree     Length
AD       6

A B C D E

A - 7 11 6 16

B 7 - 12 9 6

C 11 12 - 10 5

D 6 9 10 - 4

E 16 6 5 4 -
 

 
We choose the next edge from rows A and D with the least weight.  We 
cannot choose from columns A and D.   This gives the edge DE.  We add this 
to our tree.  We delete the column E, which is now connected to the tree.  
Since E is connected, we can use rows A, D and E in future iterations. 
 

Tree
AD  
DE  

Length
6
4

From

To

A B C D E

A - 7 11 6 16

B 7 - 12 9 6

C 11 12 - 10 5

D 6 9 10 - 4

E 16 6 5 4 -
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The least weighted edge is now EC with weight 5.  We add EC, delete the 
column C, and enable the row C. 
 

Tree
AD  
DE 
EC 

Length
6
4
5

From

To

A B C D E

A - 7 11 6 16

B 7 - 12 9 6

C 11 12 - 10 5

D 6 9 10 - 4

E 16 6 5 4 -
 

 
The final vertex to connect is B.  The least edge is EB with weight 6.  We add 
this edge, delete the column B, and we are done. 
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The following diagram shows the solution, without the clutter of the deleted 
columns. 
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The graph is 
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Kruskal’s algorithm 
 
Kruskal’s algorithm is another algorithm used for finding minimum spanning trees.  It 
works in terms of edge lengths rather than by going from point to point. 
 
STEP 1 Choose the shortest edge. 
 
STEP 2 Choose the next shortest edge that connects any  previously 

unconnected vertex to any other vertex, not necessarily on the tree.  Do 
not choose an edge if it creates a closed path.  If there are two such 
edges, choose one of these at random. 

 
STEP 3. Repeat step 2 until all the vertices are connected, that is until there are 

n  1 edges, where there are n vertices. 
 
A closed path will be one that creates a loop.  If closed paths were allowed vertices 
could be connected by more than one path.  This would mean that the tree could not 
be a minimum spanning tree. 
 

Example (3) 
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(i) Use Kruskal’s algorithm to construct a minimum spanning tree for the 

above network.  The weights of the edges are in minutes. 
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(ii) Find a route that, starting and finishing at A, passes through every node 

at least once, and takes exactly 52 minutes. 
 
(iii) Find a route that, starting and finishing at A, passes through every node 

at least once, and takes less than 52 minutes.  State its time. 
 
Solution 
 
(i) 
 
The least weighted edge is BE, so we begin with that 
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The next is AB, so that is added to the network. 
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The next shortest path is GH 
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At this point the next possible shortest edge is EG 
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At this point there are three edges with the next minimum weight – BC, FG 
and EH – all of which have weight 6. 
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However, EH cannot be added, since it forms a closed path and connects E 
and H twice to the spanning tree.  Neither BC nor FG do this, and both of 
these are added. 
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We have one more vertex to connect, and there are two edges with the next 
least weight, AD and DF.  We choose one of these at random, say AD and 
connect that to the tree.  The final spanning tree is 
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The length of the minimum spanning tree is 
 
7 3 6 2 5 6 4 33        
 
(ii) 
 
This type of problem is solved by “inspection” – in other words, you just try 
one solution after another until you “see” the answer. 
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(iii) 
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The answer to the first part of the question should help here.  We need to 
replace at least one edge in the answer to part (ii) by a shorter path.  The edge 
EC with weight 12 is the longest, and by doubling up on the edge BC and 
adding BE we replace this by a path of length 2 + 6 = 8, which is a saving of 
4. 
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The length is 52  4 = 48 minutes. 

 
 

 


