

© blacksacademy.net

1

Minimum connector problem

The minimum connector of a network

A graph is a collection of vertices (also called nodes) and edges (also called arcs)
which join vertices to one another. When these edges also carry a number (a weight),
the graph is called a weighted graph. The edges can also be directed – in other words,
represent a route from, say, vertex A to B, but not from B to A. A directed graph is
also called a digraph.

A network is a weighted graph or weighted digraph. In this unit we consider only
networks that are weighted graphs. We also only consider graphs that are fully
connected – in other words, graphs where every vertex is connected to every other by
some path or other.

Graphs can be used to represent (or model) many practical situations. For example, a
network could show the possible connections between pumping stations in a projected
water main system, and the weights along the edges could indicate the costs in £1000s
of installing those connections.

A

B

C

D

E

F

G

3 4

5
7

2

6

5

12

6 9

3

5

One practical question could be: given that no two pumping stations need to be
connected more than once, and that every pumping station must be connected to every
other, not necessarily directly, what is the least cost of installing the network?

An answer to this questions requires one to find the minimum connector – also called
the minimum spanning tree or minimum weight spanning tree.

A spanning tree is a weighted graph that connects all the vertices of the graph to one
another, either directly or through other vertices, such that no vertex is connected to
the graph more than once.

© blacksacademy.net

2

A minimum connected is a spanning tree that has the least total weight. In other
words, it is a minimum connector is a weighted graph (or digraph) in which all the
vertices are connected to all the others either directly or through other vertices, and
which has the least weight possible.

A solution to this problem is

A

B

C

D

E

F

G

3 4

2

6

5

12 3

There can be more than one solution to such a problem, since there can be sometimes
more than one way to construct a minimum connector. For example, in this case the
vertex D can be connected to the tree by the edge DG, as above, or by the edge ED,
since both edges have the same weight, and there is no edge connecting D to the tree
which has a lower weight.

A

B

C

D

E

F

G

3 4

2

6

5

12 3

The problem of finding a minimum connector, (or minimum spanning tree), is one
that should be programmable – in other words, there should be an algorithm for
finding such a tree.

This is indeed the case.

© blacksacademy.net

3

The algorithms that find the minimum connector are called greedy algorithms. The
thinking behind this term is that in finding the minimum connector you choose the
easiest path. Since you are trying to link nodes in the shortest possible way, or
costing the least money, it is jokingly thought that this is “greedy”.

There are two main greedy algorithms used for solving the minimum connector
problem. These are Prim’s algorithm and Kruskal’s algorithm.

Before we describe these algorithms, we note the following theorem:

Theorem

If a network has n vertices, then there are n 1 edges in any spanning tree.

The proof of this theorem would be an easy application of the technique of
mathematical induction. However, here we only explain it.

If we have two vertices, then we require only one edge to connect them.

So there are 2 vertices and 1 edge.

If we then add one more vertex, we require one more edge to connect that vertex to
the existing tree. This edge could connect the vertex to the tree in one of two ways,
but there will be just one edge required.

So there would be 3 vertices and 2 edges – or n vertices and n 1 edges. In general,
adding one vertex adds one edge, and as we started with one less edge than vertices,
we have one less edge in all.

Prim’s algorithm

STEP 1 Choose any vertex to be the starting point of the spanning tree, T.

STEP 2 Add to the tree, T, the shortest edge that has one vertex in T and the

other vertex not in T. If there is a choice of two or more such edges,
choose one of them at random.

© blacksacademy.net

4

STEP 3 Repeat step 2 until all the vertices of the graph are added. This means
that there will be n 1 edges, so this step could also be written: repeat
step 2 until there are n 1 edges in the tree.

It is a theorem that this algorithm does indeed find the minimum connector. One
proof of such a theorem could be by contradiction. In other words, you would start by
assuming that there was a minimum connector of a network, but that Prim’s algorithm
did not find it, and then show that this lead to a contradiction.

Prim’s algorithm is best illustrated by worked examples.

Example (1)

In the following network the weights along the edges represent distances in
kilometres between towns.

A

B C

D E F

G H

I

3

5 3

6

2

8

7

2

1

4

6

7 2

9 3

Using Prim’s algorithm find a minimum spanning tree.

Solution

We can choose any vertex as the starting point of the minimum spanning tree,
so let us choose vertex A. We add to the vertex A the shortest edge that is
connected to A. This is the edge AC with length 2.

© blacksacademy.net

5

A

B C

D E F

G H

I

2

The tree T consists of just the edge AC. We add to T the shortest remaining
edge that connects with T. This is the edge, AB. The tree becomes

A

B

D F

G H

I

3 2

E

We iterate (repeat) this process until all the vertices are connected. The next
step is

A

B

D F

G H

I

3 2

E

3

The end result is

© blacksacademy.net

6

A

B

D F

G H

I

3 2

E

3

2

1

4

3

2

With length

length = 3 2 3 4 2 1 2 3 20km

Matrix representation of Prim’s algorithm

A matrix is a rectangular array of numbers.

We require a matrix representation of Prim’s algorithm. Once we have the matrix, we
can use operations on the matrix to find the minimum connector.

Such operations would be suitable for programming for a computer, which is one
reason why we are interested in a matrix representation.

Example (2)

The following weighted graph shows the costs in £1000 of connecting five
towns telephone cables. Using Prim’s algorithm in matrix form, find a
minimum spanning tree for the telephone network, and its cost.

A

CB

D E

12

7

69

6

16

11

10
5

4

© blacksacademy.net

7

Solution

Firstly, we have to construct the matrix representation of the weighted graph.
This is

A B C D E

A - 7 11 6 16

B 7 - 12 9 6

C 11 12 - 10 5

D 6 9 10 - 4

E 16 6 5 4 -

From

To

The matrix shows the weight of connecting one vertex to another. The row represents
the starting vertex; the column the ending vertex. Thus the edge connecting C to D is
shown by the entries in the matrix

A B C D E

A - 7 11 6 16

B 7 - 12 9 6

C 11 12 - 10 5

D 6 9 10 - 4

E 16 6 5 4 -

From

To

There are two entries in the matrix for this one edge. This is because the edge from C
to D is the same as the edge from D to C. In a directed graph (a digraph) the entries
could be different, because the edge from C to D could have a different weight from
the edge running in the opposite direction from D to C. However, here we are not
concerned with directed graphs.

In Prim’s algorithm we start with any randomly chosen vertex, so we may as
well start with A. We chose the shortest edge in the row, which is the edge
AD with length 6.

© blacksacademy.net

8

A B C D E

A - 7 11 6 16

B 7 - 12 9 6

C 11 12 - 10 5

D 6 9 10 - 4

E 16 6 5 4 -

From

To
Tree Length
AD 6

This connects A and D to the tree so we delete columns A and D to indicate
that they are now connected to the tree. On the other hand, since only A and
D are connected to the tree, only rows A and D can be used for further
connections.

From

To
Tree Length
AD 6

A B C D E

A - 7 11 6 16

B 7 - 12 9 6

C 11 12 - 10 5

D 6 9 10 - 4

E 16 6 5 4 -

We choose the next edge from rows A and D with the least weight. We
cannot choose from columns A and D. This gives the edge DE. We add this
to our tree. We delete the column E, which is now connected to the tree.
Since E is connected, we can use rows A, D and E in future iterations.

Tree
AD
DE

Length
6
4

From

To

A B C D E

A - 7 11 6 16

B 7 - 12 9 6

C 11 12 - 10 5

D 6 9 10 - 4

E 16 6 5 4 -

© blacksacademy.net

9

The least weighted edge is now EC with weight 5. We add EC, delete the
column C, and enable the row C.

Tree
AD
DE
EC

Length
6
4
5

From

To

A B C D E

A - 7 11 6 16

B 7 - 12 9 6

C 11 12 - 10 5

D 6 9 10 - 4

E 16 6 5 4 -

The final vertex to connect is B. The least edge is EB with weight 6. We add
this edge, delete the column B, and we are done.

A B C D E

A - 7 11 6 16

B 7 - 12 9 6

C 11 12 - 10 5

D 6 9 10 - 4

E 16 6 5 4 -

Tree
AD
DE
EC
EB

Length
6
4
5
6

From

To

The following diagram shows the solution, without the clutter of the deleted
columns.

A B C D E

A - 7 11 6 16

B 7 - 12 9 6

C 11 12 - 10 5

D 6 9 10 - 4

E 16 6 5 4 -

Tree
AD
DE
EC
EB

Length
6
4
5
6

From

To

The graph is

© blacksacademy.net

10

A

CB

D E

6

6

5

4

Kruskal’s algorithm

Kruskal’s algorithm is another algorithm used for finding minimum spanning trees. It
works in terms of edge lengths rather than by going from point to point.

STEP 1 Choose the shortest edge.

STEP 2 Choose the next shortest edge that connects any previously

unconnected vertex to any other vertex, not necessarily on the tree. Do
not choose an edge if it creates a closed path. If there are two such
edges, choose one of these at random.

STEP 3. Repeat step 2 until all the vertices are connected, that is until there are

n 1 edges, where there are n vertices.

A closed path will be one that creates a loop. If closed paths were allowed vertices
could be connected by more than one path. This would mean that the tree could not
be a minimum spanning tree.

Example (3)

A B C

D E

F G H

3

7
8 2

6

12

13

5
6

46

7
9

(i) Use Kruskal’s algorithm to construct a minimum spanning tree for the

above network. The weights of the edges are in minutes.

© blacksacademy.net

11

(ii) Find a route that, starting and finishing at A, passes through every node

at least once, and takes exactly 52 minutes.

(iii) Find a route that, starting and finishing at A, passes through every node

at least once, and takes less than 52 minutes. State its time.

Solution

(i)

The least weighted edge is BE, so we begin with that

A B C

D E

F G H

2

The next is AB, so that is added to the network.

A B C

D E

F G H

3

2

The next shortest path is GH

© blacksacademy.net

12

A B C

D E

F G H

3

2

4

At this point the next possible shortest edge is EG

A B C

D E

F G H

3

2

4

5

At this point there are three edges with the next minimum weight – BC, FG
and EH – all of which have weight 6.

A B C

D E

F G H

3

2

4

5

6

6

6

However, EH cannot be added, since it forms a closed path and connects E
and H twice to the spanning tree. Neither BC nor FG do this, and both of
these are added.

© blacksacademy.net

13

A B C

D E

F G H

3

2

4

5

6

6

We have one more vertex to connect, and there are two edges with the next
least weight, AD and DF. We choose one of these at random, say AD and
connect that to the tree. The final spanning tree is

A B C

D E

F G H

3

7

6

5

46

2

The length of the minimum spanning tree is

7 3 6 2 5 6 4 33

(ii)

This type of problem is solved by “inspection” – in other words, you just try
one solution after another until you “see” the answer.

A B C

D E

F G H

3

7

6

12

7

46

7

(iii)

© blacksacademy.net

14

The answer to the first part of the question should help here. We need to
replace at least one edge in the answer to part (ii) by a shorter path. The edge
EC with weight 12 is the longest, and by doubling up on the edge BC and
adding BE we replace this by a path of length 2 + 6 = 8, which is a saving of
4.

A B C

D E

F G H

3

7

6

7

46

7

6

2

The length is 52 4 = 48 minutes.

