Modulus

Definition of the modulus

The symbol $|x|$ means the size of magnitude of x. It is called the modulus of x. It is defined by

$$
|x|= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}
$$

Its graph is

For $x \geq 0$ this is identical to the graph of $y=x$.
For $x<0$ this is the reflection of $y=x$ in the y-axis.

Example (1)

Solve $3|x|+3=5-|x|$

Solution

This is a linear equation in $|x|$.

$$
\begin{aligned}
& 3|x|+3=5-|x| \\
& 4|x|=2 \\
& |x|=\frac{1}{2} \\
& x=\frac{1}{2} \quad \text { or } x=-\frac{1}{2}
\end{aligned}
$$

In the following problem we have to remove the modulus sign at the beginning. To do this we use the definition to split the problem into two parts.

Example (2)

Solve $|5 x+3|=8$
Solution
$|5 x+3|=8$
either $5 x+3=8$ or $-(5 x+3)=8$
If $5 x+3=8$
$5 x=5$
$x=1$
If $-(5 x+3)=8$
$-5 x-3=8$
$-5 x=11$
$x=-\frac{11}{5}$
Therefore, either $x=1$ or $x=-\frac{11}{5}$

Modulus inequalities

A modulus inequality is an inequality such as $3 x-1>|x-2|$. Such equations are solved by the same method as for modulus equations - by splitting the problem into two parts if necessary. Manipulation of an inequality also obeys the usual rule that if one multiplies by a negative number then one must reverse the sign of the inequality.

Example (3)

Solve $1-3 x>|x-2|$
Solution
$1-3 x>|x-2|$
Either $x-2>0$ or $x-2<0$
$i \quad$ Suppose $x-2>0$
Then $x>2$ and $1-3 x>|x-2|$ implies
$1-3 x>x-2$
$-4 x>-3$
$x<\frac{3}{4}$
The conditions $x>2$ and $x<\frac{3}{4}$ cannot be simultaneously true.
Therefore it is not possible that $x>2$
ii
Let $x-2<0$. Then $x<2$ and $1-3 x>|x-2|$ implies

$$
\begin{aligned}
& 1-3 x>-(x-2) \\
& 1-3 x>-x+2 \\
& -2 x>1 \\
& x<-\frac{1}{2}
\end{aligned}
$$

Hence the solution is $x<-\frac{1}{2}$

Intersection of modulus functions

We wish to find the points of intersection of two functions involving a modulus. By sketching the graphs of both functions we are able to deduce equations that do not involve a modulus of the lines (or curves) whose points of intersection are required.

Example (4)

Find the points of intersection of

$$
y=|x-1| \text { and } y=3-\frac{1}{2}|x-1|
$$

Solution

We begin by sketching the graphs of both functions.

$$
\begin{aligned}
& \text { For } y=|x-1| \\
& x \geq 1 \quad \Rightarrow \quad y=x-1 \\
& m=1 \quad \text { intercept }=-1 \\
& x<1 \quad \Rightarrow \quad y=-x+1 \quad m=-1 \quad \text { intercept }=1 \\
& \text { For } y=3-\frac{1}{2}|x-1| \\
& x \geq 1 \Rightarrow y=-\frac{1}{2} x+\frac{7}{2} \quad m=-\frac{1}{2} \text { intercept }=\frac{5}{2} \\
& x<1 \quad \Rightarrow \quad y=\frac{1}{2} x+\frac{5}{2} \quad m=\frac{1}{2} \quad \text { intercept }=\frac{7}{2}
\end{aligned}
$$

blacksacademy.net

The graph illustrates that we have to solve

$$
\begin{array}{ll}
y=x-1 & y=-\frac{1}{2} x+\frac{7}{2} \\
y=-x+1 & y=\frac{1}{2} x+\frac{5}{2}
\end{array}
$$

For (1)
$x-1=-\frac{1}{2} x+\frac{7}{2} \quad \Rightarrow \quad x=3 \quad y=2$
For (2)
$-x+1=\frac{1}{2} x+\frac{5}{2} \quad \Rightarrow \quad x=-1 \quad y=2$
The points of intersection are $(3,2)$ and $(-1,2)$

Dealing with the modulus in the denominator of a fraction

There are two techniques that can be used to clear the modulus from the denominator of a fraction and so bring it to the top.
(1) Use the definition to split the problem into two cases

Example (5)

The definition of the modulus is

$$
|x|= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}
$$

Use this definition to solve

$$
\frac{|x|+1}{|x|-1}<4
$$

Solution

$$
\begin{array}{ll}
i & \text { Suppose } x<-1 \text { or } x>1 \text { so }|x|>1 \\
& |x|-1>0 \\
& |x|+1<4(|x|-1) \\
& |x|+1<4|x|-4 \\
& 3|x|>5 \\
& |x|>5 / 3 \\
& x<-5 / 3 \text { or } x>5 / 3
\end{array}
$$

ii

$$
\begin{aligned}
& \text { Suppose }-1<x<1 \text {, so }|x|<1 \\
& \text { Then }|x|-1<0 \\
& \therefore|x|+1>4(|x|-1) \quad \begin{array}{l}
\text { [Multiplying both sides by a negative number }|x|-1 \\
\text { so reverse the sign of the inequality.] }
\end{array} \\
& |x|+1>4|x|-4 \\
& 3|x|<5 \\
& |x|<5 / 3 \\
& -5 / 3<x<5 / 3
\end{aligned}
$$

But we supposed $-1<x<1$, so the inequality is satisfied when $-1<x<1$
Combining the two inequalities
$x<-5 / 3$ or $x>5 / 3$ or $-1<x<1$
(2) Use the property $|x|^{2}=x^{2}$ since the square of any number is always positive.

Example (6)

Use the property $|x|^{2}=x^{2}$ to solve $\frac{|x|+1}{|x|-1}<4$.

Solution

$$
\begin{aligned}
& \frac{|x|+1}{|x|-1}<4 \\
& (|x|+1)(|x|-1)<4(|x|-1)^{2} \\
& x^{2}-1<4\left(x^{2}-2|x|+1\right) \\
& x^{2}-1<4 x^{2}-8|x|+4 \\
& 8|x|<3 x^{2}+5 \\
& 64 x^{2}<\left(3 x^{2}+5\right)^{2} \\
& 64 x^{2}<9 x^{4}+30 x^{2}+25 \\
& 9 x^{4}-34 x^{2}+25>0 \\
& \therefore x^{2}=\frac{34 \pm \sqrt{34^{2}-4 \times 9 \times 25}}{18} \\
& x^{2}=\frac{34 \pm 16}{18} \\
& x^{2}=25 / 9 \text { or } x^{2}=1 \\
& x= \pm 5 / 3 \text { or } x= \pm 1
\end{aligned}
$$

The graph of $y=9 x^{4}-34 x^{2}+25$ has roots at $x= \pm 5 / 3$ or $x= \pm 1$. Between those roots it changes sign and below $x=-5 / 3$ it is positive. Hence it may be sketched as follows.

$$
\frac{|x|+1}{|x|-1}<4 \text { when } 9 x^{4}-34 x^{2}+25>0
$$

That is when $x<-5 / 3$ or $x>5 / 3$ or $-1<x<1$

Comparing the two methods: it is slightly easier to get started with the second method, but as example (6) illustrates the subsequent algebra can get "ugly". It is important to be aware of the property $|x|^{2}=x^{2}$ but we recommend using the first method to solve problems of this type, which relies on the definition of the modulus to split the problem into two sub-problems.

