Modulus

Definition of the modulus

The symbol |x| means the size of magnitude of x. It is called the *modulus* of x. It is defined by

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

Its graph is

For $x \ge 0$ this is identical to the graph of y = x. For x < 0 this is the reflection of y = x in the *y*-axis.

Example (1)

Solve 3|x| + 3 = 5 - |x|

Solution

This is a linear equation in |x|.

$$3|x| + 3 = 5 - |x|$$

 $4|x| = 2$
 $|x| = \frac{1}{2}$
 $x = \frac{1}{2}$ or $x = -\frac{1}{2}$

In the following problem we have to remove the modulus sign at the beginning. To do this we use the definition to split the problem into two parts.

Example (2) Solve |5x + 3| = 8Solution |5x + 3| = 8either 5x + 3 = 8 or -(5x + 3) = 8If 5x + 3 = 8 5x = 5 x = 1If -(5x + 3) = 8 -5x - 3 = 8 -5x = 11 $x = -\frac{11}{5}$ Therefore, either x = 1 or $x = -\frac{11}{5}$

Modulus inequalities

A modulus inequality is an inequality such as 3x - 1 > |x - 2|. Such equations are solved by the same method as for modulus equations – by splitting the problem into two parts if necessary. Manipulation of an inequality also obeys the usual rule that if one multiplies by a negative number then one must reverse the sign of the inequality.

```
Example (3)

Solve 1-3x > |x-2|

Solution

1-3x > |x-2|

Either x-2 > 0 or x-2 < 0

i
Suppose x-2 > 0

Then x > 2 and 1-3x > |x-2| implies

1-3x > x-2

-4x > -3

x < \frac{3}{4}

The conditions x > 2 and x < \frac{3}{4} cannot be simultaneously true.

Therefore it is not possible that x > 2
```

ii Let x - 2 < 0. Then x < 2 and 1 - 3x > |x - 2| implies 1 - 3x > -(x - 2) 1 - 3x > -x + 2 -2x > 1 $x < -\frac{1}{2}$ Hence the solution is $x < -\frac{1}{2}$

Intersection of modulus functions

We wish to find the points of intersection of two functions involving a modulus. By sketching the graphs of both functions we are able to deduce equations that do not involve a modulus of the lines (or curves) whose points of intersection are required.

Example (4)

Find the points of intersection of

$$y = |x - 1|$$
 and $y = 3 - \frac{1}{2}|x - 1|$

Solution

We begin by sketching the graphs of both functions.

For
$$y = |x - 1|$$
 $x \ge 1$ \Rightarrow $y = x - 1$ $m = 1$ intercept = -1 $x < 1$ \Rightarrow $y = -x + 1$ $m = -1$ intercept = 1For $y = 3 - \frac{1}{2}|x - 1|$ $x \ge 1$ \Rightarrow $y = -\frac{1}{2}x + \frac{7}{2}$ $m = -\frac{1}{2}$ intercept = $\frac{5}{2}$ $x < 1$ \Rightarrow $y = \frac{1}{2}x + \frac{5}{2}$ $m = \frac{1}{2}$ intercept = $\frac{7}{2}$

The graph illustrates that we have to solve

(1)	y = x - 1	$y = -\frac{1}{2}x$	$x + \frac{7}{2}$	
(2)	y = -x + 1	$y = \frac{1}{2}x + \frac{5}{2}$		
For (1)				
x – 1 = –	$-\frac{1}{2}x + \frac{7}{2}$	\Rightarrow	<i>x</i> = 3	<i>y</i> = 2
For (2)				
- <i>x</i> + 1 =	$\frac{1}{2}x + \frac{5}{2}$	\Rightarrow	<i>x</i> = -1	<i>y</i> = 2

The points of intersection are (3,2) and (-1,2)

Dealing with the modulus in the denominator of a fraction

There are two techniques that can be used to clear the modulus from the denominator of a fraction and so bring it to the top.

(1) Use the definition to split the problem into two cases

Example (5)

The definition of the modulus is

$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

Use this definition to solve

$$\frac{|x|+1}{|x|-1} < 4$$

Solution

i
Suppose
$$x < -1$$
 or $x > 1$ so $|x| > 1$
 $|x| - 1 > 0$
 $|x| + 1 < 4(|x| - 1)$
 $|x| + 1 < 4|x| - 4$
 $3|x| > 5$
 $|x| > \frac{5}{3}$
 $x < -\frac{5}{3}$ or $x > \frac{5}{3}$

ii Suppose -1 < x < 1, so |x| < 1Then |x| - 1 < 0 $\therefore |x| + 1 > 4(|x| - 1)$ [Multiplying both sides by a negative number |x| - 1so reverse the sign of the inequality.] |x| + 1 > 4|x| - 4 3|x| < 5 $|x| < \frac{5}{3}$ $-\frac{5}{3} < x < \frac{5}{3}$ But we supposed -1 < x < 1, so the inequality is satisfied when -1 < x < 1

Combining the two inequalities

$$x < -\frac{5}{3}$$
 or $x > \frac{5}{3}$ or $-1 < x < 1$

(2) Use the property $|x|^2 = x^2$ since the square of any number is always positive.

Example (6)

Use the property $\left|x\right|^{2} = x^{2}$ to solve $\frac{\left|x\right|+1}{\left|x\right|-1} < 4$.

Solution

$$\frac{|\mathbf{x}| + 1}{|\mathbf{x}| - 1} < 4$$

$$(|\mathbf{x}| + 1)(|\mathbf{x}| - 1) < 4(|\mathbf{x}| - 1)^{2}$$

$$x^{2} - 1 < 4(x^{2} - 2|\mathbf{x}| + 1)$$

$$x^{2} - 1 < 4x^{2} - 8|\mathbf{x}| + 4$$

$$8|\mathbf{x}| < 3x^{2} + 5$$

$$64x^{2} < (3x^{2} + 5)^{2}$$

$$64x^{2} < 9x^{4} + 30x^{2} + 25$$

$$9x^{4} - 34x^{2} + 25 > 0$$

$$\therefore x^{2} = \frac{34 \pm \sqrt{34^{2} - 4 \times 9 \times 25}}{18}$$

$$x^{2} = \frac{34 \pm 16}{18}$$

$$x^{2} = \frac{25}{9} \text{ or } x^{2} = 1$$

$$x = \pm \frac{5}{3} \text{ or } x = \pm 1$$

The graph of $y = 9x^4 - 34x^2 + 25$ has roots at $x = \pm \frac{5}{3}$ or $x = \pm 1$. Between those roots it changes sign and below $x = -\frac{5}{3}$ it is positive. Hence it may be sketched as follows.

Comparing the two methods: it is slightly easier to get started with the second method, but as example (6) illustrates the subsequent algebra can get "ugly". It is important to be aware of the property $|x|^2 = x^2$ but we recommend using the first method to solve problems of this type, which relies on the definition of the modulus to split the problem into two sub-problems.

80