Moment generating functions

Moments

Moment is originally a concept from Physics used to describe the turning effect of a force.

O/»
MA
N—

Imagine two children playing on a see-saw. The turning effect of child X will be greater if either he
moves up the bench in the direction marked or he eats a substantial amount from the large picnic
hamper and so puts on weight.

When two or more particles are connected in some way they have a joint centre of mass.

The centre of mass, ¢, will be changed by changing the distance from the centre of mass for one of
the particles, or by changing the mass of one of the particles.

From physics

moment = force x perpendicular distance.

The centre of mass is that point around which all the moments are zero.

These ideas are generalised to random variables. Each value x; that a random variable X can take
together with its probability of occurring

P (X =X ) =D
can be thought of as making a contribution to the final location of the mean or central tendency.

The mean is that value of X about which the total moment is 0.
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The moment of the value x; is hence
(% — ) P(X =x,)

Where x4 is the mean of the distribution. That is, the moment of x; is the distance of x; from the
mean multiplied by the probability that X takes the value x;.

The sum of the expressions (x, — ) P(X = x,) could be written:

n

= E(X —p)= 3 (5 - p) P(X =x)

i=1

Since u=FE (x) is the central tendency of the distribution it follows that

m=E(X-u)=0

This derivation of the concept of a first moment about a central value invites generalisation. The
expression, E(X- i)', can be given meaning for any integer value of r.

Thus, the 7th moment of a random variable X about the mean x4, which is also called the rth central
moment, is defined as

Ho=E(X—p)
Forr=20,1,2, ...
For a discrete variable this gives

n r

1= (x—p) p(X=x)

i=1

For a continuous variables this is:

© r

u, = J(x—,u) S (x).dx

—0

where /' (x) is the probability density function for X.
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Properties of moments
Property 1

Ho=1

Proof

o= E(x—p) =E(1)=1
Property 2

=0

o= E(x—u)1 =0 by definition of u

Property 3

o =0"

That is, the second central moment is the variance.

Proof

For a discrete distribution, and x, = J. (x - /J) f (x).dx

—00

In either case, this is the definition of variance.

Property 4

missing

Moment generating functions.

A moment generating function is a function with a Taylor series that has coefficients that enable us
to find moments. A moment generating function generates the moments of a random probability

distribution. It turns out that moment generating functions have all the same form. Hence, moment
generating functions are defined by that form
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M, (1)= E(e’x)
For a discrete variable this gives

M, (1)= y e p(X =x)=pe +p,e +pe+..

i=1

And for a continuous variable this gives
M, ()= [ & f (x).dx

Where f(x) is the probability density function for X.

Example

A fair six-sided die is thrown once. Let X be the random variable representing the score
obtained from this throw. Find the moment generating function of X.

P(X:n):é for n=1,2,3,4,5,6.

The probability distribution is:-

n I 2 3 4 5 6
P(X=n) 1/6 1/6 1/6 1/6 1/6 1/6

ThenMx (t):let +l€2t +l€3t +l€4t +l€5t +_e6t
6 6 6 6 6 6
We will use this example to illustrate further properties of moment generating functions.

Firstly, let us calculate E(x) and Var(x) for this distribution by the usual method:
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E(x)=) xP(X=x,)
=1><l+2><l+3><l+4><l+5><l+6><l
6 6 3 6 6

_1+2+43+445+6 7
6 2

E(x*)=Yx"P(X=x)
1

:12xl+22 xl+32><l+42xl+52 xl+62><—
6 6 6 6 6 6

_1+4+49+16+25+36 91
6 6

Var(x) =E(x2)—[E(x)]2
:2_(7JZ 91 49 182147 35

6 \2

6 4 2 12

We now compute M, '(0) and M,*(0):

r1( ):i(l t+leZt+le3t+ e4t+ eSt+ e6t\J
dr\6 6 6 6 Jit=0
:(let+262t+§e3r+ e4t+ eSt+ eétj
6 6 6 6 6 6 t=0
1 2 3 4 5 6 7
=—4—+—+—F+—+—=—
6 6 6 6 6 6 2
=E(x)
MXZ( ):i l t+262t+ e3t+ €4t+ €5t+ eétj
d 6 t=0
2 2 42 2 2
_et+_62t+_e3t+_e4t+_65t+_e6t
6 6 6 6 6 6 t=0

Thus, moment generating functions can be used to find the expectations of XX X°,... and, in
particular, the variance.

In general
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J— dr
dt’

E(x")

M. (1)

t=0

We prove the particular cases that

d
E(x)=—
(x) dt “(t)t:O
and

d2
E(x*)=—
(x) ar’ “‘(t)zzo

for a discrete variable.

d t 2t kt
=—\pe + p,e +...+pe +..
=0 dt (p P P )t=0

=pe +2p,e” +. . +kpe' +..

t=0

=p +2p, +...+kp,
= inpi = E(X)
i=1
For a discrete variable, we also have

d2

d : p :
?MX (1) :E(p,e +2p,e” +..+kp e +...)|t=0

t=0

=pe +2°pe +.+k’pe +.|

=p +22p2 +...+k2pk

n 2
= Z X D
i=1

()

For continuous variables
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MO =[] ()=
(e
_ (jixe“f(x) dx)|,0
= [ xf(x)ax
— E(X)

&

dt’ *

Example
A continuous random variable X has probability density function given by

f(x):{% 0<x<2

0 otherwise

Find the moment generating function, M,(?) and hence by expanding M, () as a power series
in ¢, find E(X) and E(X°)

M, (0) =[] £ (x)e" dx

= J.Ozge’x dx = % I; x.e™ .dx
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This requires intergration by parts. The intergration by parts formula is

[re'=re-[re
f(x)=x g'(x)=¢"
f'(x)=1 g(x):%e’x
Then

Expanding M (¢) as a power series

1
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Mx(t)zg(e”(th)ﬂ)
2y (2t)
=L2 [1+2z+(;)+(i+..}(2t—1)+1}
2t 2! 3!
3 (2¢)4
_ L 2t+(21)2+( ) +( /) o= 12+
2t 3!
1 (., 4* 8 8 16 16t J
-4 - T ...
2t 2 2 6 6 24
1 3
=57 2t2+—+2t4+...j

() () ()
2

+
|

3!

J’_

41



E(X)=M;(O)=%(1+—t+t2+ J|
4
=(§+2t+ )|t_0
_4
3
E(XZ)_M;’(o)_%GuH..)L0
=2+,
=2

Moment generating function of the sum of independent random variables

The moment generating function of the sum of independent random variables is the product of the
moment generating functions for those variables. That is:

M(xﬂf) (t) = Mx (t)My (t)
Firstly, we illustrate this idea.

Example

[ TO BE ADDED ]
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