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Motion in a Vertical Circle 
 
 
 
Prerequisites 
 

You should be familiar with (1) motion in a horizontal circle and (2) energy conversions between 

gravitational and kinetic energy. 

 

Summary of motion in a horizontal circle 

A particle moves in a horizontal circle of radius r with constant speed v when it is subject to a 

single resultant centripetal force directed from the centre of mass of the particle to the centre of 

the circle such that centripetal force is given by  
2

2mv
F mr

r
  where angular velocity .  The 

centripetal acceleration is  
2

2v
a r

r
.  The relationship between the angular velocity    and 

the speed  v  is v r . 

 

 Example (1) 

 

 

C
P

O  

 

The diagram shows a fixed hollow smooth cone with semi-vertical angle   and vertex O.  

A particle P of mass m kg is describing a horizontal circle with centre C with constant 

speed 
1

2.8 ms  on the inner surface of the cone.   

(a) Find the height of C above O. 

(b) Given that the angular speed is 1.4 1rad s  find  . 
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Solution 

 

 

C
P

O

N

W mg= 

F
h

r
P

  

 

 (a) Let the height of C above O be h.  From trigonometry we also have 

 tan
r

h
 

There are two forces acting on the particle P.  These are the weight  W mg  of 

the particle, and the normal reaction  N .  The resultant of these two forces is 

the centripetal force 
 

 
 

2mv
F

r
.  Resolving horizontally and vertically 

 
 

 




 

 

2

cos

sin

mv
N

r

N mg

 

 Hence 

 

 

  
 
 
 



  

22

2

22

tan

2.8
0.8 m

9.8

mg rg

vmv
r

r rg

h v

v
h

g

 

(b) From v r  

 
 

 

2.8 1.4

2.1
2

1.5

r

r
 

 

 





  

  

2
tan 2.5

0.8
68.2 0.1

r

h  
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In practice such a particle in example (1) would lose energy owing to friction between the particle 

and the surface of the cone.  This loss of energy would result in the particle slowing down, so a 

constant speed of 1 msv  could not be maintained. 

 

 Example (1) continued 

(c) Explain what would happen to the trajectory of particle P in example (1) as it   

slows down. 

(d) What happens to the magnitude of the centripetal force as the particle P slows 

down? 

 

Solution 

(c) It would spiral down. 

 

 

P

O  

 

(b) The centripetal force would remain the same throughout the motion of the 

particle, even as it spirals down.  This is because the centripetal force is provided 

by the horizontal component of the normal reaction at the interior surface of the 

cone.  This in turn is determined by the weight (mass) of the particle.  None of 

these vary so the centripetal force remains the same. 

 

  

P

N

W mg= 

F

 

 

  To explain this further the centripetal force is given by 
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  
2

centripetal force
mv

r
 

If the centripetal force remains constant, then as v decreases so must r.  Hence 

the particle spirals down. 

 

 Example (2) 

 Consider the equation 

 
2

centripetal force
mv

r
. 

Suppose in this equation the velocity of a particle v is increasing but the radius r remains 

constant.  What can you say about the centripetal force? 

 

Solution 

If in the equation 


2mv

F
r

 

the quantities m and r remain constant, then, as v increases so must F.  So a particle can 

remain in circular motion even if its speed v varies provided the centripetal force varies 

correspondingly. 

 

Example (3) 

 

 

 

A small boy played an amusing game of whirling a ball on a string in the air.  The 

trajectory of the ball described a vertical circle of constant radius.  Using energy 

considerations explain why the speed of the ball could not be as great at the top of the 

vertical circle as at the bottom.  Ignore air resistance. 
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 Solution 

 

 

h

P

bottom

top

 

 

As the ball progresses from the bottom of the vertical circle to the top it gains a height h 

equivalent to the diameter of the circle.  Hence it gains gravitational potential energy.  

Assuming there is no other source of energy being given to the particle (it is not, for 

instance, supplied with a means of rocket propulsion), this gain of gravitational potential 

energy can only come from the loss of its kinetic energy.  So the particle must be slowing 

down. 

  

 

 

Motion in a vertical circle 
 

When a particle moves in a vertical circle the speed of the particle is constantly changing.  This is 

owing to the transfer of energy that takes place between the particle’s gravitational potential 

energy and its kinetic energy.   As the particle ascends it is gaining gravitational potential energy 

and losing kinetic energy; this is reversed as it descends.   

 

Since the particle is moving in a circle, the radius r is constant.  The centripetal force is still given 

by the equation 


2

centripetal force
mv

r
 

but the magnitude of the centripetal force itself varies as the speed of the particle varies. 

 

Tangential and radial components 

When a particle moves in a vertical circle there is (1) a centripetal force acting towards the centre 

of the circle and (2) a force acting in the direction of the motion of the particle that is causing it 

either to speed up or slow down.  Thus, we resolve the forces on the particle into components. 
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tangential

radial

O

P

 

 

Radial components 

These are the components of the motion of P and forces acting on it that are directed towards the 

centre of the circle of motion – that is, in the diagram above, along the radius OP. 

 

Tangential components  

These are the components of the motion of P and forces acting on it that are directed at a tangent 

to the circle of motion. 

 




 







 



 

2

2

If the particle sweeps out an angle in  seconds

Its angular velocity is 

Its angular acceleration is 

The arc length swept out is  

Tangential velocity is 

Tangential accel

t

d

dt

d d

dt dt
s r

ds
v r

dt

  eration is 
dv d

r r
dt dt

 

 

Summary 

 
  

 



   

  
 

2

2

  

angle arc length radius 

angular radial
velocity 0

velocity velocity

tangential
angular

acceleration
acceleration

    

s r r

d ds
v r

dt dt

dv d
a r rd d

dt dt
dt dt

Angle Tangential component Radial component

 
2

2

radial acceleration

centripetal acceleration

                
      

v
a r

r

 

 

The most important piece of information here is the principle that whilst the object remains in 

motion in a vertical circle, its acceleration in the radial direction is constant and is given by 

 
2

2 .
v

a r
r

 Likewise, the centripetal force remains  
2

2 mv
F mr

r
. 



 

 
 

© blacksacademy.net 
 

7 

Example (4) 

One end of a light rod of length l m is attached to a fixed point O and the other end is 

attached to a particle P of mass m kg.  The particle P is oscillating back and forth along 

the minor arc AB of a vertical circle with centre O and radius l m, as shown in the 

diagram. 

 

P

A B

O

C  

 

When P is at its lowest point C its speed is 1 msu  and the tension in the rod is 3mg N.  

Show that 

 2u gl . 

 

Solution 

P

A B

O

T mg= 3

W mg= 

R

 

 

When the particle is at its lowest point it is subject to two forces, its weight  W mg  

acting vertically downwards and the tension in the rod   3T mg  acting vertically 

upwards.  The resultant of these two forces supplies the centripetal force 
2mu

R
l

 that 

keeps the particle in motion in a circle.  Hence 

 

  





2

2

3 2

2

2

R T W

mu
mg mg mg

l
u gl

u gl
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Example (5) 

One of the rides at a fairground is contraption that swings children in a vertical circle of 

radius r, so that at the top of the circle the children are hanging head down. 

 






















 

 

Find in terms of g and r the minimum speed of the children at the top of the circle in 

order for the children not to fall out. 

 

Solution 

P P P

N
W

R  

 

The children may be modelled as a single particle P of mass m kg.  There are two forces 

acting on the children (who in this model are not attached to the car in any way).  These 

are their weight  W mg  and the normal reaction  contact force, N between them and 

the base of the car.  This normal reaction is ultimately supplied by the tension in the 

radial strut connecting the car to the centre of the wheel.  The tension pulls the base of 
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the car and the base of the car pushes the children. The children will remain in the car so 

long as the normal reaction is positive. The children will feel a force acting on then – so 

they will feel 'stuck' to the seats of the car.  The resultant of these two forces is  

 R N W  

This supplies the centripetal force 
2mv

R
r

, which has the effect of keeping the children 

in vertical circular motion.   The children remain in circular motion so long as  0N .  

That is 
2mv

W
r

.  Hence the minimum velocity is given by  







2

2

 
mv

W
r

mv
mg

r

v rg

 

 

 

 

Problem solving by means of conservation of energy 
 

A number of problems involving motion in a vertical circle are conveniently solved by use of the 

principle of conservation of energy.  For example, if a pendulum bob, initially at rest vertically 

below a fixed point O is given a transverse initial velocity, u, it will begin to move in a vertical 

circle. The initial velocity imparts to it an initial kinetic energy.   

 

P

u

O

P 

 

 

As it moves upwards this kinetic energy is converted to gravitational potential energy. 

Information about the subsequent motion of the particle can be deduced from the equation 

 gain in gravitational potential energy loss of kinetic energy EU K  

The following example illustrates the application of this principle. 
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Example (6) 

A light inextensible string has length 4 m.  One end of this string is attached to a fixed 

point O.  To the other end a particle P of mass m kg is attached.  The string is positioned 

horizontally and tightened.  In this position the particle is released from rest.  Find the 

speed of the particle when the angle the string makes with the horizontal is 72.   You 

may assume no air-resistance. 

 

Solution 

To solve this problem we use conservation of energy 

 

PO

P 

72

4

4

4

O

72
h = 4sin72

 

 

As the diagram shows when the angle the string makes with the horizontal is 72, the 

particle has fallen a height  4sin72h .  The loss of gravitational potential energy that 

this causes is converted to kinetic energy. 



21

2

EK U

mv mgh
 





   

 1

 2

2 9.81 4sin72

8.64 ms    (3 s.f.)

v gh

 

 

 

 

Centripetal force as the resultant of weight and other forces 
 

We may be asked to find the magnitude of the contact force between a particle and a surface, or 

the tension in a string or light rod to which a particle is attached.  We have already seen that we 

may find it by using the principle that so long as the particle remains in vertical circular motion 

the resultant of the forces supplies the acceleration towards the centre. 

 
2

resultant radial force = 
v

R ma a
r

 

For example, when a particle P is in vertical motion within a hollow sphere 
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P

 

 

The forces acting on the particle P are the weight W and the normal reaction N.  The resultant 

radial force is 
2mv

R
r

.  This force is supplied by the normal reaction. Hence, if we know the 

mass and velocity of the particle we can find the normal reaction.  With the angle   as defined in 

the diagram, the radial component of the weight is given by 

radial cosW mg  

 

N

W

P
W cos

O
R = mv

  r

2

 

 





 

 

2

2

cos

cos

mv
N mg

r
mv

N mg
r

 

 

Example (7) 

A body P of mass m kg lies on the inside of a smooth fixed cylinder of radius 2.0 m. It is 

struck with an initial velocity of 19 ms .  If the angle made between the line joining P to 

the centre of the cylinder O and the line descending vertically from O is   find the value 

of   when P leaves the surface of the cylinder. 
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P

Q

O

9 ms1

v

2

 

 

The diagram illustrates the motion of the mass P.  It leaves the interior surface of the 

cylinder at a point Q.  The forces acting on P are its weight and the normal reaction. 

 

N

W

P

W sin (    90)

O  90

N

W

P
W cos

O
R = mv

  r

2

 

 

Resolving radially        

   
2

cos
mv

N mg
r

 

This formula still applies when   > 90° , since cos  is negative when   > 90° .  Also when 

  > 90°  

      
2

sin 90
mv

N mg
r

 

But      sin 90 cos  hence for all values of   
2

 we have cos
mv

N mg
r

. 

The particle leaves the surface of the cylinder when  0N . 





 

 

2

2

cos

cos

mv
mg

r
v

g
r

 

Substituting  9.8,  2g r  into this 
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



 

 

2

2

9.8cos
2

19.6cos

v

v

 

We need to find 2v .  To do this we use conservation of energy.  The total energy of the 

particle is 21

2
mu  at the bottom of the cylinder, where  19 msu  is the initial velocity.  As 

the particle climbs up the surface of the cylinder this energy is divided between 

gravitational potential energy and the remaining kinetic energy of the particle.  As the 

particle moves up the inner surface of the cylinder the height is 

    cos (1 cos )h r r r  

 

O

r = 2

h r r=    cos 

r cos 

 

 

  This formula also still applies when  > 90°, as cos  is negative when  > 90°  so 

 1 cos 1 . 

 

 

O

v

r = 2

r r   cos    = 2  2cos  

 

 





 

  

  

2 2

2 2

2 2

Total energy = kinetic energy + gravitational potential energy

1 1

2 2

2 (1 cos )

2 (1 cos )

mu mgh mv

u gr v

v u gr

 

Substituting   9,  9.8,  2u g r  into this gives 


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  





     

  

 

22

2

2

9 2 9.8 2 (1 cos )

81 39.2 39.2cos

41.8 39.2cos

v

v

v

 

We saw above that when the particle leaves the surface  2 19.6cosv .  Hence 

 

 

 





  

     


  

19.6cos 41.8 39.2cos

41.8 41.8
cos 0.710...

39.2 19.6 58.8

135.3 0.1

 

Once P leaves the surface its motion is described by the motion of a particle under gravity 

in free fall. 

 

 

 


