Motion described in polar coordinates

Vectors in polar co-ordinates

Suppose a particle at point $P=[r, \theta]$ - that is a particle whose position is given in polar co-ordinates - has velocity \mathbf{v}. The velocity can be described in terms of its radical and the transverse components

In order to do so we define $\hat{\mathbf{r}}$ to be a unit vector in the radical direction and $\hat{\boldsymbol{\theta}}$ to be a unit vector in the transverse direction - that is, perpendicular to $\hat{\mathbf{r}}$ and taken in an anti- clockwise direction.

So the velocity is $\mathbf{v}=v_{r} \hat{\mathbf{r}}+v_{\theta} \hat{\boldsymbol{\theta}}$ where v_{r}, v_{θ} are the magnitudes of the radical and transverse components respectively.

The position of the particle at P can also be given in these polar vectors.
$\overrightarrow{O P}=\mathbf{r}=r \hat{\mathbf{r}}$
where r is the magnitude of the distance of P from the origin.
If an object is moving in a circle with centre O and radius a, then its position is

$$
\mathbf{r}=a \hat{\mathbf{r}}
$$

and its velocity is

$$
\underline{v}=a \omega \hat{\boldsymbol{\theta}}
$$

its acceleration is $\mathbf{a}=-a \omega^{2} \hat{\mathbf{r}}$ that is its acceleration is directed along the radius towards the centre.

Change of basis

The unit vectors $\underline{\mathbf{i}}$ and $\underline{\mathbf{j}}$ represent fixed directions, but the vectors $\hat{\mathbf{r}}$ and $\hat{\boldsymbol{\theta}}$ change direction as θ varies.

In two dimensions both sets of unit vectors- that is $\{\hat{\mathbf{i}}, \underline{\hat{\mathbf{j}}}\}$, and $\{\underline{\underline{\mathbf{r}}, \underline{\hat{\boldsymbol{\theta}}}\}}\}$ form a basis- that is, any two dimensional vector $\underline{\hat{\mathbf{r}}}$ can be written in terms of either set
$\underline{\hat{\mathbf{r}}}=\alpha \underline{\hat{\mathbf{i}}}+b \underline{\hat{\mathbf{j}}}=\alpha \underline{\hat{\mathbf{r}}}+\beta \underline{\hat{\boldsymbol{\theta}}}$
so it would be useful to know how to convert from one basis to the other.

As the diagram indicates,
$\underline{\mathbf{r}}=\cos \theta \underline{\mathbf{i}}+\sin \theta \underline{\hat{\mathbf{j}}}$
$\underline{\hat{\boldsymbol{\theta}}}=-\sin \theta \underline{\hat{\mathbf{i}}}+\cos \theta \underline{\hat{\mathbf{j}}}$
This can be written in matrix form
$\binom{\underline{\hat{\mathbf{r}}}}{\underline{\hat{\boldsymbol{\theta}}}}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)\binom{\underline{\hat{\mathbf{i}}}}{\underline{\hat{\mathbf{j}}}}$
the matrix $R_{\theta}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$ represents a rotation through θ degrees. Its inverse is a rotation through $-\theta$ degrees.
$\underline{\mathbf{R}}_{\theta}=\left(\begin{array}{cc}\cos (-\theta) & \sin (-\theta) \\ -\sin (-\theta) & \cos (-\theta)\end{array}\right)=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
So $\underline{\mathbf{i}}$ and $\underline{\mathbf{j}}$ can be given in terms of $\underline{\mathbf{r}}$ and $\underline{\hat{\boldsymbol{\theta}}}$ as

$$
\begin{aligned}
& \binom{\underline{\mathbf{i}}}{\underline{\mathbf{j}}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{\underline{\mathbf{r}}}{\underline{\hat{\boldsymbol{\theta}}}} \\
& \underline{\hat{\mathbf{i}}}=\cos \theta \underline{\hat{\mathbf{r}}}-\sin \theta \underline{\hat{\boldsymbol{\theta}}} \\
& \underline{\hat{\mathbf{j}}}=\sin \theta \underline{\hat{\mathbf{r}}}+\cos \theta \underline{\hat{\boldsymbol{\theta}}}
\end{aligned}
$$

Example

A particle has velocity

$$
\underline{\mathbf{v}}=4 \cos \theta \underline{\hat{\mathbf{r}}}-4 \sin \theta \underline{\hat{\boldsymbol{\theta}}}
$$

What is its velocity when referred to Cartesian co-ordinates?
Solution
Let the velocity in \mathbf{i}, \mathbf{j} co-ordinates be

$$
\underline{\mathbf{v}}=\alpha \underline{\mathbf{i}}+\beta \underline{\hat{\mathbf{j}}}
$$

then

$$
\begin{aligned}
& \alpha \underline{\mathbf{i}}=\{\cos \theta\} v_{\underline{r}} \underline{\hat{\mathbf{r}}}-\{\sin \theta\} v_{\theta} \underline{\hat{\boldsymbol{\theta}}} \\
& \alpha=\cos \theta(4 \cos \theta)-\sin \theta(-4 \sin \theta)=4\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=4
\end{aligned}
$$

and
$\beta \underline{\hat{\mathbf{j}}}=(-\sin \theta) v_{r} \underline{\hat{\mathbf{r}}}-(\cos \theta) v_{\theta} \underline{\hat{\boldsymbol{\theta}}}$
$\bar{\beta}=-\sin \theta(4 \cos \theta)-\cos \theta(-4 \sin \theta)=0$

So $\underline{\mathbf{v}}=4 \underline{\mathbf{i}}$
This indicates that the velocity is constant in the $\underline{\mathbf{i}}$ direction.

Rate of change of $\underline{\hat{\mathbf{r}}}$ and $\underline{\hat{\boldsymbol{\theta}}}$

A unit vector in the radial direction is
$\underline{\hat{\mathbf{r}}}=\cos \theta \underline{\mathbf{i}}+\sin \theta \underline{\mathbf{j}}$

Suppose $\underline{\hat{\mathbf{r}}}$ is in fact a function of another parameter t - for example t could represent time.

Then $\underline{\hat{\mathbf{r}}}=\underline{\hat{\mathbf{r}}}(t)$ would give the position of the radial vector at time t.

Then $\underline{\hat{\mathbf{r}}}(t)=\frac{d \underline{\underline{\mathbf{r}}}}{d t}$
Using the chain rule
$\hat{\underline{\mathbf{r}}}(t)=\frac{d \underline{\underline{\mathbf{r}}}}{d \theta} \frac{d \theta}{d t}$
since $\hat{\mathbf{r}}=\cos \theta \underline{\mathbf{i}}+\sin \theta \underline{\mathbf{j}}$
then
$\frac{d \hat{\mathbf{r}}}{d \theta}=-\sin \theta \underline{\mathbf{i}}+\cos \theta \underline{\mathbf{j}}$
so
$\underline{\hat{\mathbf{r}}}(t)=(-\sin \theta \underline{\mathbf{i}}+\cos \theta \underline{\mathbf{j}}) \frac{d \theta}{d t}=\underline{\hat{\boldsymbol{\theta}}} \frac{d \theta}{d t}=\dot{\theta} \underline{\hat{\boldsymbol{\theta}}}$
where $\dot{\theta}=\frac{d \theta}{d t}$
The rate of change of $\underline{\hat{\hat{r}}}$ is in the $\underline{\hat{\boldsymbol{\theta}}}$ direction and has magnitude $\dot{\theta}=\frac{d \theta}{d t}$
We use the same approach to find the rate of change of $\underline{\hat{\boldsymbol{\theta}}}$.
$\underline{\hat{\boldsymbol{\theta}}}=-\sin \theta \underline{\mathbf{i}}+\cos \theta \mathbf{j}$
$\frac{d \underline{\hat{\boldsymbol{\theta}}}}{d \theta}=-\cos \theta \underline{\mathbf{i}}-\sin \theta \underline{\mathbf{j}}$
Therefore

$$
\begin{aligned}
\frac{d \underline{\hat{\boldsymbol{\theta}}}}{d t} & =\frac{d \underline{\hat{\mathbf{\theta}}}}{d \theta} \frac{d \theta}{d t} \\
& =\{-\cos \theta \underline{\theta}-\sin \theta \underline{\mathbf{j}}\} \dot{\theta} \\
& =-\{\cos \theta \underline{\mathbf{i}}+\sin \theta \underline{\mathbf{j}}\} \dot{\theta} \\
& =-\dot{\theta} \underline{\hat{\mathbf{r}}}
\end{aligned}
$$

Velocity in polar co-ordinates

The position of a particle at a point P in polar co-ordinates is
$\underline{\mathbf{r}}=r \underline{\hat{\mathbf{r}}}$
where r is the magnitude of the distance of P from the origin. The velocity is

$$
\begin{aligned}
& \underline{\mathbf{v}}=\frac{d \underline{\mathbf{r}}}{d t} \\
&=\frac{d}{d t} r \underline{\mathbf{r}} \\
&=\frac{d r}{d t} \underline{\hat{\mathbf{r}}}+r \frac{d \hat{\mathbf{r}}}{d t} \\
&=\dot{r} \underline{\hat{\mathbf{r}}}+r \dot{\theta} \underline{\hat{\boldsymbol{\theta}}} \quad \text { By the chain rule } \\
& \text { Since } \frac{d \hat{\mathbf{r}}}{d t}=\dot{\theta} \underline{\hat{\boldsymbol{\theta}}}
\end{aligned}
$$

So the radical component of the velocity is \dot{r} and the transverse component is $r \dot{\theta}$.
$\underline{\hat{\mathbf{r}}}$ and $\underline{\hat{\boldsymbol{\theta}}}$ are perpendicular to one another (they are "orthogonal")

Hence, the speed, v, of a particle is given by

$$
v=\sqrt{(\dot{r})^{2}+(r \dot{\theta})^{2}}
$$

Example

In one of Jules Verne's books a space craft in the form of a giant cannon ball is launched from a huge cannon. At the moment of launch, the cannon ball, containing three brave men, has radical speed $2000 \mathrm{~ms}^{-1}$. The period of the earth's rotation on its own axis of revolution is 24 hours and its radius is 6,380 km . Find the speed at which our three intrepid explorers are travelling at the instant at which the cannon ball leaves the cannon.

Solution

The period is

$$
T=24 \times 60 \times 60=86400 s
$$

The angular velocity is

$$
w=\dot{\theta}=\frac{2 \pi}{86400}=7.272 \times 10^{-5} \mathrm{rads}^{-1}
$$

The transverse component of the velocity is

$$
\begin{aligned}
v_{\theta} & =r \dot{\theta} \\
& =6.380 \times 10^{6} \times 7.272 \times 10^{-5} \\
& =463.9 \ldots . \mathrm{ms}^{-1}
\end{aligned}
$$

The radial speed is $2000 \mathrm{~ms}^{-1}$, hence the speed is

$$
v=\sqrt{(\dot{r})^{2}+(r \dot{\theta})^{2}}=\sqrt{(463.9)^{2}+(2000)^{2}}=2053 \mathrm{~ms}^{-1}(4 . S . F .)
$$

Acceleration in polar co-ordinates

To determine the acceleration of an object in polar co-ordinates we must differentiate its velocity vector.

$$
\underline{v}=\dot{r} \underline{\hat{\mathbf{r}}}+r \dot{\theta} \underline{\hat{\boldsymbol{\theta}}}
$$

then

$$
\begin{aligned}
\underline{\mathbf{a}} & =\frac{d \underline{\mathbf{v}}}{d t}=\frac{d}{d t}(\dot{r} \underline{\hat{\mathbf{r}}})+\frac{d}{d t}(r \dot{\theta} \underline{\hat{\boldsymbol{\theta}}}) \\
& =\left(\ddot{r} \underline{\mathbf{r}}+\dot{r} \frac{d \hat{\mathbf{r}}}{d t}\right)+\left(\dot{r} \dot{\theta} \underline{\boldsymbol{\theta}}+r \ddot{\theta} \underline{\hat{\boldsymbol{\theta}}}+r \dot{\theta} \frac{d}{d t} \hat{\boldsymbol{\theta}}\right) \\
& =\ddot{r} \hat{\mathbf{r}}+\dot{r} \dot{\theta} \underline{\hat{\boldsymbol{\theta}}}+\dot{r} \dot{\theta} \underline{\hat{\boldsymbol{\theta}}}+r \ddot{\theta} \underline{\boldsymbol{\theta}}-r \dot{\theta} \dot{\theta} \hat{\mathbf{r}} \\
& =\left\{\ddot{r}-r \dot{\theta}^{2}\right\} \underline{\mathbf{r}}+\{r \ddot{\theta}+2 \dot{r} \dot{\theta}\} \underline{\boldsymbol{\theta}}
\end{aligned}
$$

This means that the radical component of the acceleration is
$\ddot{r}-r \dot{\theta}^{2}$
and the transverse component is

$$
r \ddot{\theta}+2 \dot{r} \dot{\theta}
$$

Example

A beautiful girl is sitting on a horse on a merry-go-round. She has dropped her purse and is foolishly trying to reach down to pick it up. The merry-goround has a period of 10 s . In order to prevent the girl from harming herself, Larry, the experienced operator is walking towards her along a radius of the merry-go-round. The radius of the merry-go-round is 8 m . At a given time Larry is 4 m from the centre and is travelling $1.5 \mathrm{~ms}^{-1}$. If Larry has a mass of 75 kg find the force he has to exert in a radical direction in order to maintain his speed towards the damsel in distress. Find also the force he has to exert in a transverse direction in order to maintain his balance. Find the total force he has to exert in order to maintain his course of action.

Solution
$T=10$
Therefore $\omega=\dot{\theta}=\frac{2 \pi}{T}=\frac{2 \pi}{10}=0.2 \pi \mathrm{rads}^{-1}$
The radical component of Larry's acceleration is

$$
\begin{aligned}
a_{r} & =\ddot{r}-r \dot{\theta}^{2} \\
& =\frac{d^{2}}{d t^{2}}(0.2 \pi)-4 \times(0.2 \pi)^{2} \\
& =0-4 \times(0.2 \pi)^{2} \\
& =1.579 \ldots s^{-2}
\end{aligned}
$$

Since $F=m a$
The force Larry must exert in order to maintain his constant velocity towards the girl is

$$
F_{r}=75 \times 1.579 \ldots . \ldots=120 \mathrm{~N}(2 . S . F .)
$$

The transverse component of Larry's acceleration is
$a_{\theta}=r \ddot{\theta}+2 \dot{r} \dot{\theta}$
Here $r=4 \quad \theta=0.2 \pi, \quad r=1.5 \quad \theta=0$
Hence

$$
a_{\theta}=4 \times 0+2 \times 1.5 \times 0.2 \pi=1.884 . . \mathrm{ms}^{-2}
$$

Hence the force he must exert in the transverse direction is

$$
F_{\theta}=m a=75 \times 1.884 . .=140 \mathrm{~N}
$$

$$
\mathbf{A}_{\mathbf{F}_{r}=140}
$$

The total force is:

$$
\sqrt{\left(F_{\theta}\right)^{2}+\left(F_{R}\right)^{2}}=\sqrt{(1.18)^{2}+(141)^{2}}=180 N(2 . S . F .)
$$

Example

A particle is moving with constant angular velocity $6 \mathrm{rads}^{-1}$ along a curve with equation
$r=4 \cos \theta$
Find the radical and transverse components of the acceleration in terms of θ. Find the acceleration of the particle.

Solution
We have
$\underline{\mathbf{r}}=4 \cos \theta \underline{\hat{\mathbf{r}}}$
and $\theta=6 \mathrm{rads}^{-1}$
where
$r=4 \cos \theta$
Now
$\dot{r}=-(4 \sin \theta) \dot{\theta}$
$\ddot{r}=-4 \cos \theta(\dot{\theta})^{2}-4 \sin \theta \ddot{\theta}$
$\dot{\theta}=6$ and $\ddot{\theta}=0$

The radical component of the acceleration is

$$
\begin{aligned}
a_{r} & =\ddot{r}-r \theta^{2} \\
& =-4 \cos \theta(\dot{\theta})^{2}-(4 \sin \theta) \ddot{\theta}-r \dot{\theta}^{2} \\
& =(-4 \cos \theta) 6^{2}-(4 \sin \theta) \times 0-(4 \cos \theta) 6^{2} \\
& =-288 \cos \theta
\end{aligned}
$$

The transverse component of the acceleration is

$$
\begin{aligned}
a_{\theta} & =r \ddot{\theta}+2 \dot{r} \dot{\theta} \\
& =r \ddot{\theta}-2\{-4 \sin \theta\} \dot{\theta}^{2} \\
& =(4 \cos \theta) \times 0+2 \times(-4 \sin \theta) \times 6^{2} \\
& =-288 \sin \theta
\end{aligned}
$$

The magnitude of the total acceleration is

$$
\begin{aligned}
a & =\sqrt{\left(a_{r}\right)^{2}+\left(a_{\theta}\right)^{2}} \\
& =\sqrt{(-288 \cos \theta)^{2}+(-288 \sin \theta)^{2}} \\
& =288 m s^{-2}
\end{aligned}
$$

So the acceleration is constant.

