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Motion under a central force 
 
 
An object performs motion under a central force when the only significant force 
acting on that object is a force directed radically towards or away from a fixed object. 
 

O
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P  
 
 
Since the only force acting on the object is the central force, the object must more in a 
plane. 
 

O
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There is no other force to lift it out of the plane. 
 
We will also show that for an object subject to only a central force: 

2r h   constant. 
 
Now the transverse acceleration is 
 

2a r r      

 
But 
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So the transverse acceleration can also be written 
 

 21 d
a r

r dt    

 
Since the transverse acceleration for an object under only a central force is 0 
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 21
0

d
r

r dt
   

 

Therefore:  2 0
d

r
dt

   

 
Hence, by direct integration 
 

2r h   
 
Where h is a constant. 
 
 
Transverse Velocity  
 
The transverse velocity of an object is 
 
v r    

 
We have just seen that 
 

2r   constant 
 
Hence  
 

 r r  constant 

 
That is 
 
rv  constant 

 
This means that the distance of the object from the centre of orbit times the transverse 
velocity is always constant.  Objects in orbit move on ellipses, where the centre of 
gravity lies at one focus. 
 

d  rvO 
P  

 
If d represents the distance of closest approach of the object to the centre of orbit, and 
v is the speed of the object at this point, then 
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constantv r vd h     

If the object has mass m then the quantity 2mr  represents its angular momentum.  
The fact that 2r  is constant thus indicates that for an object subject solely to a central 
force the angular momentum is constant. 
 
 
Kepler's Second Law 
 
Kepler's second law states that the line joining an object in orbit to the sun sweeps out 
equal areas in equal times. 
 

C
S

DA

B  
 
If the area X is equal  to the area Y then the object in orbit takes the same time to 
travel from A to B as it does to travel from C to D. 
 
Kepler's second law can be derived from the fact that for a body subject only to a 
central force 
 

2 constantr    
 
Consider a sector of an ellipse 
 

r


P

r r + 
[  + , r r 

[ , r   
 
In time t the object P travels from 
 
[ , ] to [ , ]r r r      
 
The area of the sector swept out in this time can be approximated by a triangle 
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r


r r + 

 
 
The area of the triangle is 
 

   1
sin

2
A r r      

 
This is an application of the usual result for a triangle with sides a,b and included 

angle  that its area  is 
1

sin
2

A ab   

 

The rate of change of the area is    1 1
sin

2

A
r r r

t t
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   

 
As 0   the approximation becomes exact; furthermore, 
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So the rate of change of the area is  
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Since 2 Constantr   , the rate of change is constant.  This means that the area swept 
out by a radical line in any constant period of time must be constant. 
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Motion under gravity 
 
The gravitational force is 
 

2

GmM
F

r
  

 
It is an example of a force that obeys an inverse square law - that is, the magnitude of 
the force is inversely proportional to the square of the distance between the two 
masses.  When considering a planetary system the mass of the planet can be 
considered to be negligible in comparison to the mass of the sun.  Consequently, the 
planet can be regarded as moving under a central force given by 
 

2

GMm
F

r
  

 
This force can be written in vector form as 
 

2
ˆ

GMm

r
 F r  

 
The negative sign indicates that the force is directed towards the centre of attraction. 
 
We remind you that the general equation for a conic section is 
 

1

1 cos
r

e 



 

 
where e is the eccentricity.  The magnitude of the eccentricity determines the shape of 
the section.  Thus 
 

0e    circle 

1e    ellipse 

1e    parabola 

1e    hyperbola 

 
Kepler's first law states that the path of each planet is an ellipse with the sun at one 
focus. 
 
We will now derive this law - or rather, a generalisation of it, that the orbit of any 
object subject to only a central force that obeys the inverse square law and is directed 
towards the origin is an ellipse. 
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Proof 
 

O
F

P  
 
 
Let O  be the origin and P  be the object in orbit.  Let ˆrr r  represent the position of 
the object at time t .  The object is subject to a central force that obeys the inverse 
square law. 
 

2
ˆ

km
F

r
  r  

 
Where k is a constant and m  is the mass of the object.  Newton's second law is 
F ma .  Let ra  represent the radial component of the acceleration. 
 
Therefore  
 

2
ˆr

km
m

r


a r  

 

Hence 
2

ˆ
r

k

r


a r  

 

The radial component is  2 ˆr r r a r  

 

Hence 2
2

k
r r

r
 

   

 
It is difficult to solve this differential equation directly.  Experience has shown that 

substituting 
1

r
u

 effectively brings it into a form that can be solved.  Before we do 

so , we use the fact that  
 

2r h   constant 
 
To derive formulae for r and r in terms of u .  Since 
 

11
r u

u
   

2

1dr du

dt dtu
   
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That is 
2

1
r u

u
    

 

However 
du

u
dt

  can also be expressed by the chain rule as 

 
du du d du

u
dt d dt d

 
 

      

 

So 
2

1 du
r

du





   

 
But 2r h   
 

Therefore 
2

h
u





 

 

Therefore 
du

r h
d

   

 
On differentiating again 
 

2 2

2 2

d u d d u
r h h

dtd d

 
 

       

 
Once again 2 2u h   so 
 

2
2 2

2

d u
r u h

d
   

 

We substitute 
2

2 2 2

2

1
, ,

d u
r u h r u h

u d



      

Into 2
2

k
r r

r
 

   

 
To obtain 
 

 
2

22 2 2 2

2

1d u
u h u h ku

ud
     

 
On simplifying and dividing by 2u  
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2
2

2

d u
h h u k

d
     

 

Therefore 
2

2 2

d u k
u

d h
   

 
This is a second order, linear constant coefficient in-homogeneous differential 
equation.  The homogeneous equation is 
 

2

2

d u
u o

d
   

 
With auxiliary equation 2 1 0    
 
With roots  i   and solution 
 

 coscu A     

 
Where A  is the amplitude and  is the phase shift.  This supplies the complementary 
function.  To find the particular function we try  
 
u m  
 
Where m is a constant. Then 
 

2

2
0  ,  0

du d u

d d 
   

Hence on substituting into 
2

2 2

d u k
u

d h
   

2

k
m

h
  

so 
2p

k
u

h
  

 
So finally the solution is 
 

  2
cosc p

k
u u u A

h
       

 
Where A  and   are constants determined by the initial conditions.  Substituting 

1
u

r
  gives 
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  2

1
cos

k
A

r h
     

 
The axes can be chosen so that 0  ; hence 
 

2

1
cos

k
A

r h
   

 
or  
 

2

2

2

2

2

2

1

cos

cos

cos 1

1

1 cos

r
k

A
h

h

Ah k

h
k

Ah
k

h

k e


















    

 

where 
2Ah

e
k

  

 
This is the polar equation of a conic.  The particular form the path of the object takes 
{whether circle, ellipse, parabola, or hyperbola} will depend on the value of e . 
Determining that the phase angle 0  , requires that the x-axis acts as the major axis 
of symmetry of the conic.  It also requires that 0   when 0t  . 
 
This also introduces another beneficial simplification.  When 0, 0t    and the 

velocity is purely transverse,  0 0v v . 

 
We showed earlier that the law 2r h   could be expressed as 
 
v r h   

where  v r h    
 
So if we know the speed of the object of the point of closest approach - that is v  and 

r , then we can determine h . 
 
Once h is known, the eccentricity of the orbit can be determined.  It should be noted 
that the constant, k , is taken from the inverse square law, so it, too, should be given. 
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2
ˆ

k
F m

r


 r  

 
This makes it possible to substitute for h and k in 
 

2 1

1 cos

h
r

k e 
   
 

 

 
Also when 0, ,cos 1t r r    , which gives 
 

2 1

1

h
r

k e
   
 

 

 
Rearrangement gives 
 

2

1
h

e
kr

   

2

1
h

e
kr

   

 
Putting h r v  , then 
 

2

1
r v

e
k
    

Hence, when 
2

2
r v

k
    then 1e   

 
So in this case the orbit is an ellipse 
 

If 
2

2
r v

k
    then 1e   

 
and the orbit follows a parabola. 
 

Where 1
r v

k
    then 0e   

and the orbit follows a circle. 
 
 
Energy and central force systems 
 
Total energy is conserved when a particle is subject only to a central force. 
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Gravitational potential energy is the integral of the gravitational force. 
 

xr

GMm GMm GMm
u dx

x r r

         

 
The kinetic energy of a particle is 

21

2
mv  

 
Since total energy is conserved 
 
Kinetic Energy + Gravitational potential energy = Total energy 
 
Where the total energy, E , is a constant.  
 
Thus  
 

21

2

GMm
mr E

r


  

 
If an object under a central force is in orbit on an elliptical path, then it is possible to 
deduce the values 1r , and 2r of the distance of the ellipse along the major axis 
 

1r

r2

 
 
To show this, total energy is 
 

21

2

km
E mv

r
   

 

Where 
2

km
F

r
  represents the central force. 
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When 1r r  and 2r r  the object cuts the x-axis, so the velocity is wholly transverse 

and h vr , or 
h

v
r

 .  Substituting into the energy equation gives 

2
1

2

h km
E m

r r

   
 

 

 
Hence 2 22Er mh kmr   
or 2 22 0Er kmr mh    
 
Which is a quadratic in r giving roots 1 2  r r  which are the values of r  along the major 
axis of the elliptical orbit. 


