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Motion under a Variable Force  
 
 

 

 
Prerequisites 
 

You should already be familiar with the formation of a differential equation, the solution to first 

order differential equations by the method of separation of variables and the kinematic 

relationships given by 

 

 



 
2

2

dx
v t

dt

dv d x
a t

dt dt

 

where x is the displacement of a particle at time t, v is its velocity and a is its acceleration. 

 

Example (1) 

Having jumped out of an aeroplane a man is falling through the air.  At time  0t  his 

velocity is 140 ms  when he opens his parachute.  His motion is then opposed by a 

resistive force that is a function of his velocity with magnitude 216v .  The man and his 

parachute may be modelled together as a particle of mass 80 kg. 

(a) Show that v satisfies the differential equation 

 



249

5

dv v

dt
 

(b) Find his terminal velocity with the parachute open. 

(c) Solve the equation in part (a) and hence find the time for which the man is falling 

between opening his parachute and reaching a velocity of 17.25 ms . 

 

Solution 

(a) The two forces acting on the man and parachute are their combined weight  W  

and the resistive force   216R v .  The resultant force is 

 

 

 

  

 

2

2

2

16

80 9.8 16

784 16

F W R

mg v

v

v

 

 By Newton’s second law  
dv

F ma m
dt

.  Hence 
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 

 
 

2

2 2

80 784 16

784 16 49

80 5

dv
v

dt

dv v v

dt

 

(b) At the terminal velocity the resultant force and acceleration are zero.  Hence 

 




 

 





2

2

2

1

49
0

5

49 0

49

7 ms

dv v

dt

v

v

v

 

(c) 



249

5

dv v

dt
 

 Separating variables 

 
 2

1
5

49
dv dt

v
 

 Here we are required to split 
 2

1

49 v
 using the technique of partial fractions. 

 
     

     
   2 2

7 71 1

49 7 7 49 14

A v B vA B
A B

v v v v
 

 Hence 

  

 
 

     


 



 
5 1 1

14 7 7
5

ln 7 ln 7
14

5 7
ln

14 7

dv dt
v v

v v c t

v
t c

v

 

  Substituting the boundary condition 0, 40t v  

 


     


5 7 40 5 47
ln ln 0.1263000...

14 7 40 14 33
c  

 When  7.25v  we have 

  
     


5 7 7.25

ln 0.1263000... 1.4439... 0.1263... 1.3176... 1.32 s  3 s.f.
14 7 7.25

t  

 

This example shows that the introduction of a resistive force into a question that is essentially 

about freefall does not create exceptional complications, provided that one is familiar with 

differential equations and their solution by means of separation of variables. 

 

  

Resistive forces 
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The motion of a projectile through air is subject to air-resistance.  Air-resistance is typical of a 

variable force.  When the projectile is stationary, there is no air-resistance.  As the velocity of the 

projectile increases, so too does the resistance.  Thus air resistance varies with velocity in some 

way.   

 

The resistance to a particle through air is a matter of empirical study.  In other words, the only 

way to discover the law governing this resistance is to conduct experiments.  We can see, however, 

that the nature of the resistance will also depend on the shape of the particle.  A streamlined 

particle will experience a different resistance to one that is rough and has sharp edges. 

 

Air is an example of a medium through which a particle can travel.  Clearly, we can consider the 

motion of a particle through other mediums.  A particle could be moving through treacle or 

though oil.  Thus, the resistance to the particle will depend also on the nature of the medium 

through which the particle is moving.  There are other variables that may influence the nature of 

the resistive force exerted on a particle moving through a medium.  For example, an electrically 

charged particle may experience a different resistance to motion than one that is not. 

 

In this chapter we are not directly concerned with the physics that may be used to explain the 

nature of the resistive force acting on a particle or with the way in which an experiment might be 

conducted and an empirical law deduced.  We are concerned primarily with the mathematical 

treatment of resistive forces, and in this subsection we shall consider just two cases 

 

(1)  Where the resistive force is proportional to the velocity of the particle 

 R v  

(2) Where the resistive force is proportional to the square of the velocity of the particle 

  2R v  

 

In fact, as example (1) shows, we have already mastered nearly all the theory that is required for 

the solution of this mathematical problem.  Essentially, we use Newton’s second law to translate 

the information given into a mathematical statement.  The relationships 

 

 



 
2

2

dx
v t

dt

dv d x
a t

dt dt

 

then enable us to form a differential equation.  However, there is one additional element of theory 

that is missing, which we now proceed to describe. 
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In the expression   
2

2

d x
a t

dt
, acceleration is a function of time.  By an application of the chain rule 

we can replace time as the independent variable by displacement.   

 

The chain rule 

Let        u x u v u v x  then 

 
du du dv

dx dv dx
. 

When u is a function of v, and v is a function of x, then rate of change of u with respect to x is 

equal the rate of change of u with respect to v multiplied by the rate of change of v with respect 

to x. 

 

The formula 
dv

a v
dx

 



    

    

    

Using the chain rule

A rearrangement

Definition of velocity, 

dv
a

dt
dv dx

dx dt
dx dv

dt dx
dv dx

v v
dx dt

 

The formula 
dv

a v
dx

 can be used to replace a by 
dv

v
dx

 and so solve a problem in terms of 

displacement rather than time.  Only a worked example can make this clear. 

  

 Example (1) continued 

(d) In part (a) we saw that the equation governing the motion of the man with his 

parachute was 

  



249

5

dv v

dt
 

Use the relationship 
dv

a v
dx

 to form a differential equation in terms of 

displacement x. 

(e) Solve this equation to find the distance the man falls during the time it takes for 

his velocity to decrease from 140 ms  to 17.25 ms . 

 

Solution 

 (d) 



249

5

dv v

dt
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  That is 




249

5

v
a  

Substituting 
dv

a v
dx

 we obtain 




249

5

dv v
v

dx
 

(e) By separation of variables 

 




   

 2

2

5
49

5
ln 49

2

v
dv dx

v

v c x

 

 The boundary condition is  0 when 40x v .  Hence 

    
25

ln 49 40 18.3666...
2

c  

 When  7.25v  we have 

  

 

   

   





2

2

5
ln 49 18.3666...

2
5

ln 49 7.25 18.366...
2

15.1905...

15.2 m 3 s.f.

x v

 

 

Example (2) 

A body of mass 2 kg, initially at rest at a point O, moves in a horizontal straight line 

under the action of a horizontal force of constant magnitude 20 N and resistance to 

motion of variable magnitude R N.  At time t s, the body is at a distance x from O and its 

velocity is 1 msv .  In an effort to understand the resistance to the body’s motion a 

student is comparing two possible models for the law governing R. 

Linear model    4R v  

Quadratic model  24R v  

(a)  Show that linear model leads  4R v  leads to the differential equation 

  10 2
dv

v v
dx

 

and find a similar differential equation linking x and v for the quadratic model,  

 24R v . 

(b) The student found that when  2.0v  he measured x to be   0.40 m 2 s.f.x .  

Solve the two differential equations you found in part (a) and use your results to 

suggest which of the two models is better, stating your reason. 
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Solution 

 


 
 



 

 2

( ) The resultant force acting on the body is

20

Applying Newton's second law to this and substituting 4

2 20 4

10 2

Then given 

10 2

Substitution of 4  leads to the differential 

a

F R

R v

a v

a v

dv
a v

dx
dv

v v
dx

R v

  2

equation

10 2
dv

v v
dx

  

 

 

 

 

   




  


    

    

   

   




   

  

 

 

 

2 2

2

2

( ) For the linear model

10 2 2 5

1

2 5
1 5

1
2 5
1

5ln 5
2

5
0, 0 ln5

2
Hence

5 1
ln5 5ln 5

2 2
For the quadratic model

10 2 2 5

1

2 5
1

ln 5
4

0, 0

b

dv
v v v

dx
v

dv dx
v

dv dx
v

v v x c

x v c

x v v

dv
v v v

dx
v

dv dx
v

v x c

x v  

   2

1
ln5

4
Hence

1 1
ln5 ln 5

4 4

c

x v

  

 When  2v  the linear model predicts that  

        
5 1

ln5 2 5ln 5 2 0.277 m 3 s.f.
2 2

x  

 The quadratic model predicts 

      
1 1 1

ln5 ln 5 4 ln5 0.402 m   3 s.f.
4 4 4

x  
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Hence, the student’s result is consistent with the quadratic model but not the 

linear model.  For this reason the quadratic model is better. 

 

Example (3) 

In this question take  210 msg .  A projectile is shot vertically upwards through a 

viscous liquid that exerts a resistive force that is proportional to square of the velocity of 

the projectile and is given by  

 20.02R v  

where v is the speed of the particle.  Given that the mass of the projectile is 0.1 kg and its 

initial launch velocity is 150 ms , find  

(a)  the greatest height it reaches, 

(b)  the time taken to reach this highest point. 

 

Solution 

(a) The projectile is moving under gravity and is also opposed by a resistive force.  

The resultant force, F, is given by 

 

 

  

 

2

2

2

0.02

0.02 0.1 10

0.02 1

F R W

v mg

v

v

 

Applying Newton’s second law 

 

 



 

  



  

2

2

2

0.02 1 0.1

5 50

Using the relationship  where  is displacement we obtain

5 50

F ma

v a

a v

dv
a v x

dx
dv

v v
dx

 

 

 


   

 2

2

We solve this differential equation by means of the separation of variables

5

50
5

ln 50  , constant
2

v
dv dx

v

x v c c

 

 

   

 



  2

To find  we substitute the boundary conditions 0 and 50.  Hence

5
ln 2550

2
Thus the equation of motion is

5 5
ln 2550 ln 50

2 2

c x v

c

x v

 

The projectile will reach its greatest height when  0v .   
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        
5 5

ln 2550 ln 50 9.83 m  3 s.f.
2 2

x  

 

 

  



  

2

2

( ) We saw above that

5 50

Substituting  we obtain the differential equation

5 50

b

a v

dv
a

dt
dv

v
dt

 

 
 2

5

50
dv dt

v
 

The integrand on the left resembles the form        1
2 2 2

1 1
tan

x
c

x a a a
.  Hence 

   
    

 
11

tan 50
10 50

v
t c  

 

 

 

 

 

 
   

 

 
   

 

1 1

1 1

Substituting the boundary conditions 0 when 50

1 50 50
tan 50 tan 50

10 1050

Thus

50 50
tan tan 50

10 1050

t v

c

v
t

 

 
      



   1 1

To find the time at which the particle is at its greatest height, we substitute 0

50 1
tan 50 tan 50 1.01137... 1.01 s 3 s.f.

10 2

v

t
 

 

 

 

 

Rectilinear motion 
 

Resistive forces are examples of variable forces – they vary with the speed of a particle in motion.  

Here we will generalise the theory and practice we have developed in the preceding section to 

consider cases where 

 

(1) Acceleration is given as a function of time, displacement or velocity 

(2) Velocity is given as a function of time or displacement. 

 

The motion under consideration shall be rectilinear meaning that it will be motion in a straight-

line.  In the following example velocity is a function of displacement. 
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 Example (4) 

A particle is moving in a straight-line.  Its displacement from a fixed point O at time t s is 

x metres and its velocity is 

10

1
v

x
. 

 Given that  0x  when  0t  find 

 (a) The value of t when  2x , 

 (b) The acceleration when  2x . 

 

 Solution 

 
 




 


 

 
   

 

   

 
  

 

 

 
2

2

10
( )

1

10
since velocity is 

1

Separating variables

1
1

10

1

10 2

0,  0  0

1

10 2

When 2,  0.4 s

a v
x

dx dx
v

dt x dt

x dx dt

x
x t c

t x c

x
t x

x t

 

 
 

   

 




  


    
  

        

2

2 3

2
3

10
( )

1

10
Now acceleration is given by  and .  Hence

1

10 10 100

1 1 1

100 100
When 2, 3.7037... 3.70 ms 3 s.f.

3 27

b v
x

dv dv
a v

dx dx x

a
x x x

x a

 

 

In the following example acceleration is given as a function of velocity. 

 

 Example (5) 

A particle P is moving in a straight line so that its acceleration 2 msa  is given at time t s 

by   
100

10 0a v
v

, where 1 msv  is its velocity.  Given that  0,  1x v  when  0t , 

find x when  9v . 
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 Solution 

 
     

 

100 10
10 10

v
a

v v
 

 
   

 

10
10

dv v
v

dx v
   since 

dv
a v

dx
 

 
 
21

10 10

v
dv dx

v
 

    
 

1 100
10

10 10
v dv dx

v
  by polynomial division  

 

 

 
      

 

 

       
 

 
      

 



 
        
 
 

2

2

2

1
10 100 ln 10

10 2

Subsituting 0 and 1

1 1
10 100 ln9 23.0222...

10 2

1
10 100 ln 10 23.0222...

10 2

When 9

91
90 100 ln 9 10 23.0222... 9.9722... 9.97 m 3 s.

10 2

v
v v x c

x v

c

v
x v v

v

x  f.

 

 

Acceleration as a function of displacement 

When acceleration is given as a function of displacement, this leads to a number of possibilities.  

One case is where acceleration is proportional to displacement, but in the opposite direction to 

the displacement.  This is a special case in itself and leads to a kind of motion that is called simple 

harmonic motion, which is a topic for a further chapter.  In general where acceleration is a 

function of displacement the solution to the differential equations that arise are beyond the scope 

of the techniques employed in this chapter. 
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