Numerical methods for solutions to differential equations

In this section we consider first order differential equations of the form
$\frac{d y}{d x}=f(x, y)$
where y is a function of x; that is
For example
$\frac{d y}{d x}=x y$
is a first order differential equation of this type. It can in fact be solved exactly by separation of variables, but exact solutions of this very general type cannot always be obtained, in which case a numerical method is required.

A numerical method will provide an approximate plot of the function $y=y(x)$ that satisfies the relationship
$\frac{d y}{d x}=f(x, y)$
To see what this means let us first solve and sketch the solution to our example
$\frac{\delta y}{\delta x}=x y$
Separating variables
$\int \frac{1}{y} d y=\int x d x$
$\ln y=\frac{x^{2}}{2}+c$
$y=e^{x^{2} / 2+c}=A e^{x^{2} / 2}$
© blacksacademy.net
$\frac{x^{2}}{2}$ is a parabola with minimum 0 at $x=0$

When $x=0 \quad y=\left.e^{h^{2} / 2}\right|_{x=0}=e^{0}=1$
When $\quad x \rightarrow+\infty \quad x^{2} / 2 \rightarrow+\infty \quad \therefore y=e^{x^{2} / 2} \rightarrow \infty$

$$
x \rightarrow-\infty \quad x^{2} / 2 \rightarrow+\infty \quad \therefore y=e^{x^{2} / 2} \rightarrow \infty
$$

There are no turning points other than $x=0$, so a sketch of $y=e^{x^{2} / 2}$ is

© blacksacademy.net

It is a curve with minimum at $x=0$ rising very steeply on both sides of the y-axis, and also symmetrical.

The graph of $y=A e^{x^{2} / 2}$ is derived from the graph of $y=e^{x^{2} / 2}$ by a scaling factor of A.
The scale factor depends on initial co-ordinates, so effectively the relationship $y=A e^{x^{2} / 2}$ defines a family of curves.

Now a numerical solution would be a plot of a curve that comes close to the real curve. The plot would start at some point on the curve, $\operatorname{say}\left(x_{0}, y_{0}\right)$ and find a sequence of subsequent points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots \ldots . .,\left(x_{i}, y_{i}\right)$ lying close to the real curve. For example, an approximation to the curve $y=e^{x^{2} / 2}$ passing through $(0,1)$ might look like

In other words a numerical solution to a differential equation is a process that starting with a point $\left(x_{0}, y_{0}\right)$ and an interval width h, so that $x_{1}=x_{0}+h$, generates a sequence of points $\left(x_{0}, y_{0}\right) \rightarrow\left(x_{1}, y_{1}\right) \rightarrow\left(x_{2}, y_{2}\right) \rightarrow \ldots \ldots$.

And these points will lie close to the original function.
The rule for generating successive x co-ordinates is simple-just add the interval width, h, to the previous value That is $x_{n+1}=x_{n}+h$. What is required is a recurrence relation that generates successive y coordinates, so that y_{n+1} will be defined exclusively in terms of previous values of x and y. The first method for finding such a recurrence relation that we will consider is Euler's method.

Euler's Method

Recall that we are looking for a numerical solution to the $1^{\text {st }}$ order differential equation
$\frac{d y}{d x}=f(x, y)$

It will be convenient to write $y^{\prime}=\frac{d y}{d x}$
So our equation to be solved becomes
$y^{\prime}=f(x, y)$

Let x_{n} and x_{n+1} be successive x values in our approximation that is separated by interval width h.

Then integrating both sides of this expression over that interval gives
$\int_{x_{n}}^{x_{n+1}} y^{\prime} d x=\int_{x_{n}}^{x_{n+1}} f(x, y) d x$
The left -hand side can be integrated directly so
$[y]_{x_{n}}^{x_{n+1}}=\int_{x_{n}}^{x_{n+1}} f(x, y) d x$
hence=
$y\left(x_{n+1}\right)-y\left(x_{n}\right)=\int_{x_{n}}^{x_{n+1}} f(x, y) d x$
We define the y_{n} co-ordinates to be $y\left(x_{n}\right)$, so
$y_{n+1}-y_{n}=\int_{x_{n}}^{x_{n+1}} f(x, y) d x$
we have seen that Euler's method provides a means of approximating an integral type
$\int_{x_{n}}^{x_{n+1}} f(x) d x$
where $x_{n+1}-x_{n}=h$, the interval width.
The approximation is by means of a rectangle.

The rectangle has area $h f\left(x_{n}\right)$
So $\int_{x_{n}}^{x_{n+1}} f(x) d x \approx h f\left(x_{n}\right)$
There is no reason why we should not generalize this to functions of two variable $f(x, y)$ and hence, by Euler's method
$\int_{x_{n}}^{x_{n+1}} f(x) d x \approx h f\left(x_{n}, y_{n}\right)$
Now we replace the right hand side of equation (1) by this approximation to obtain $y_{n+1}-y_{n} \approx h f\left(x_{n}, y_{n}\right)$

Rearranging, we obtain our recurrence reaction as
$y_{n+1}=y_{n}+h f\left(x_{n} y_{n}\right)$

In summary
Starting with an initial point $\left(x_{0}, y_{0}\right)$ and an internal width h, the approximation solution by Euler's method to the differential equation.
$\frac{d y}{d x}=f(x, y)$
is provided by the recurrence relation
$x_{n+1}=x_{n}+h$
$y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)$

Example

Find an approximate solution to $\frac{d y}{d x}=x y$
starting at $\left(x_{0}, y_{0}\right)=(0,1)$ with interval width 0.05 . Plot the first four points of your solution and compare the y-value at x_{3} with the exact solution and calculate the relative error in each case

Solution

Firstly, recall that the exact solution to
$\frac{d y}{d x}=x y$
is $y=A e^{x^{2} / 2}$.
The initial conditions $x_{0}=0, y_{0}=1$ makes $A=1$. so $y=e^{x^{2}} / 2$ is the exact, particular function.

Euler's method is

$$
\begin{aligned}
& x_{n+1}=x_{n}+h \\
& y_{n+1}=y_{n}+h f\left(x_{n} y_{0}\right)
\end{aligned}
$$

Here $h=0.05$ so
$x_{1}=x_{0}+0.05$
$y_{1}=y_{0}+0.05 x_{0} y_{0}$

$$
\begin{aligned}
x_{1} & =0+0.05=0.05 \\
y_{1} & =1+0.05 \times 0=1.00 \\
x_{2} & =x_{1}+0.05 \\
& =0.05+0.05=0.10 \\
y_{2} & =y_{1}+0.05 x_{1} y_{1} \\
& =1.00+0.05 \times 0.05 \times 1.00 \\
& =1.0025 \\
x_{3} & =x_{2}+0.05 \\
& =0.10+0.05 \\
& =0.15 \\
y_{3} & =y_{2}+0.05 x_{2} y_{2} \\
& =1.0025+0.05 \times 0.10 \times 1.0025 \\
& =1.00500625
\end{aligned}
$$

Since the exact solution is $y=e^{x^{2} / 2}$ we obtain the following exact solutions (to 8.S.F.)
$x_{0}=0 \quad y_{0}=1$
$x_{1}=0.05 \quad y_{1}=1.00125078$
$x_{2}=0.10 \quad y_{2}=1.00501252$
$x_{3}=0.15 \quad y_{3}=1.01131352$
At $\left(x_{0} y_{0}\right)$ the $\%$ relative error is zero
$\%$ relative error $=\frac{\text { absolute error }}{\text { time value }} \times 100 \%$
at $\left(x_{1}, y_{1}\right) \%$ relative error $=\frac{1.00125078-1.00}{1.00125078}=1.25 \%$ (3.S.F.)
at $\left(x_{2}, y_{2}\right) \%$ relative error $=\frac{1.00501252-1.00500625}{1.00501252}=2.50 \%$ (3.S.F.)
at $\left(x_{3}, y_{3}\right) \%$ relative error $=\frac{1.01131352-1.00500625}{1.0113152}=6.24 \%$ (3.S.F.)
So, as expected the relative error is increasing quite rapidly. We next turn our attention to the truncation error in Euler's method.

In order to do this we will introduce the symbol $f(x)=O(x)$. This is read " $f(x)$ is the order of ". What this means is that the growth of $f(x)$ is proportional to x, that is
$f(x)=0(k)$ implies $f(x) \propto x$
This symbol (called the "big oh notation") is used to describe and analyze errors. The expression

$$
f(x)=0\left(x^{2}\right)
$$

means $f(x)$ is proportional to x^{2} and so forth.
In Euler's method, we had

$$
y_{n+1}-y_{n}=\int_{x_{n}}^{x_{n+1}} f(x, y) d x
$$

We used Euler's method to approximate the right hand side, giving

$$
y_{n+1}-y_{n}=h f(x, y)+O\left(h^{2}\right)
$$

That is, the error terms for a single step is of the order of h^{2} (that is proportional to h^{2}). This is the local truncation error, because it applies to a single step. The global truncation error is the error arising from n steps. It is approximately proportional to $n h^{2}$
i.e.
global truncation error $=O\left(n h^{2}\right)$
But the number of steps, n, is a function of the step size h. If the total interval over which the function is approximated is $x_{n}-x_{0}$ then $n=\frac{x_{n}-x_{0}}{h}$
so
global truncation error $=O\left(\frac{\left(x_{n}-x_{0}\right) h^{2}}{h}\right)=O\left(\left(x_{n}-x_{0}\right) h\right)=O(h)$
since $x_{n}-x_{0}$ is a constant not depending on h. So the error carried over from one step to another is proportional to the step size.

The Euler Trapezoid Method (Runge-Kutla method)

The global truncation error for Euler's method is of the order of h, which means that accuracy can only be obtained if h is small, which correspondingly means that there is a greater risk of rounding errors. So alternative methods are sought with lower truncation errors. One such method is the trapezoidal method. Recall that in a searching for a recursive process to solve.
$\frac{d y}{d x}=f(x, y)$
we arrived at $y_{n+1}-y_{n}=\int_{x_{n}}^{x_{n+1}} f(x, y) d x$
We approximated the right hand side by a rectangle, as in Euler's method for numerical integration. In the trapezoid method we use a trapezium.

Using the trapezoid method would give
$\int_{x_{n}}^{x_{n+1}} f(x, y) \approx \frac{1}{2} h\left(f\left(x_{n} y_{n}\right)\right)+f\left(x_{n+1}, y_{n+1}\right)$
which on substitution into
$y_{n+1}-y_{n}=\int_{x_{n}}^{x_{n+1}} f(x, y) d x$
gives
$\left.y_{n+1}-y_{n}=\frac{1}{2} h\left(f\left(x_{n}, y_{n}\right)\right)+f\left(x_{n+1}, y_{n+1}\right)\right)$

Unfortunately, the right hand side of this equation contains a term $f\left(x_{n+1} y_{n+1}\right)$ which is dependant on the very value, y_{n+1} that we are seeking to approximate. We can get around this by approximating y_{n+1} using Euler's method
$y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)$
which gives
$y_{n+1}-y_{n}=\frac{1}{2} h\left\{f\left(x_{n}, y_{n}\right)+f\left(x_{n+1},\left(y_{n}+h f\left(x_{n}, y_{n}\right)\right)\right\}\right.$
or approximation
$y_{n+1}=y_{n}+\frac{1}{2} h\left\{f\left(x_{n}, y_{n}\right)+f\left(x_{n+1},\left(y_{n}+h f\left(x_{n}, y_{n}\right)\right)\right\}\right.$
The recursion process
$x_{n+1}=x_{n}+h$
$y^{*}{ }_{n+1}=y_{n}+h f\left(x_{n} y_{n}\right)$
$y_{n+1}=y_{n}+\frac{1}{2} h\left(f\left(x_{n}, y_{n}\right)+f\left(x_{n}, y^{*}{ }_{n+1}\right)\right)$

Effectively the Euler-trapezoid method finds firstly, an approximation to y_{n+1} using Euler's method and the improves upon it by means of trapezoidal method for numerical integration. For this reason the method is also called the predictor-corrector method. It is also called the Runge-Kutta method after the German mathematician Carl Runge who devised it. It was later modified by Kutta.

Example

Find a numerical solution to $\frac{d y}{d x}=x y$
with $\left(x_{0} y_{0}\right)=(0,1)$ for $x_{0}=0 x,=0.05$
$x_{2}=0.10$ and $x_{3}=0.15$
by means of the Runge-Kutta method. Calculate the relative error in the y-coordinates in each case and compare with Euler's method.

Solution
Using the trapezoidal method
$x_{n+1}=x_{n}+h$
$y_{n+1}=y_{n}+h f\left(x_{n} y_{n}\right)$
$y_{n+1}=y_{n}+\frac{1}{2} h\left(f\left(x_{n} y_{n}\right)+f\left(x_{n+1}, y_{n+1}\right)\right)$

That is
$x_{n+1}=x_{n}+0.05$
$y_{n+1}=y_{n}+0.05 x_{n} y_{n}$
$y_{n+1}=y_{n}+0.025\left(x_{n} y_{n}+y_{n+1}\right)$
so
$x_{0}=0$
$y_{0}=1$
$x_{1}=0+0.05=0.05$
© blacksacademy.net

$$
\begin{aligned}
& y_{1}=1+0.05 \times 0 \times 1=1 \\
& y_{1}=1+0.025(0+0.05 \times 1)=1.00125 \\
& x_{2}=0.05+0.05=0.10 \\
& y_{2}=1.00125+0.05 \times 0.05 \times 1.00125=1.003+5313 \\
& y_{2}=1.00125+0.025(0.05 \times 1.00125+0.10 \times 1.00375313)=1.00501095 \\
& x_{3}=0.10+0.05=0.15 \\
& y_{3}=1.00501095+0.05 \times 0.10 \times 1.00501095=1.01003600 \\
& y_{3}=1.00501095+0.25(0.10 \times 1.00501095+0.15 \times 1.01003600)=1.01131111
\end{aligned}
$$

Tabulating the results and calculating the \% relative error for the trapezoidal method

n	x_{n}	True value of $y_{n}(8 . S . F)$.	y_{n} by Euler's method	\% relative error in Euler's method	y_{n} by trapezoidal method	\% relative error on trapezoidal method
0	0	1	1	-	1	-
1	0.05	1.00125078	1	1.25	1.00125	0.0000078
2	0.10	1.00501252	1.0025	2.50	1.00501095	0.000156
3	0.15	1.01131352	1.00500625	6.54	1.01131111	0.000024

The switch to the Runge-Kutta method has improved to the accuracy considerably.

The Runge-Kutta method can be shown to have local truncation error of the order h^{2} 。

