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Numerical methods for solutions to differential 
equations 

 
 

In this section we consider first order differential equations of the form 
 

 ,
dy

f x y
dx

  

 
where y is a function of x ; that is  
 
For example 
 
dy

xy
dx

  

 
is a first order differential equation of this type.  It can in fact be solved exactly by 
separation of variables, but exact solutions of this very general type cannot always be 
obtained, in which case a numerical method is required. 
 
A numerical method will provide an approximate plot of the function  y y x  that 

satisfies the relationship 
 

 ,
dy

f x y
dx

  

 
To see what this means let us first solve and sketch the solution to our example 
 

y
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x




  

 
Separating variables 
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There are no turning points other than 0x  , so a sketch of 
2

2  is
x

y e  
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It is a curve with minimum at 0x  rising very steeply on both sides of the y-axis, and 
also symmetrical. 
 

The graph of 
2

2
x

y Ae is derived from the graph of 
2

2
x

y e  by a scaling factor of A .  

The scale factor depends on initial co-ordinates, so effectively the relationship 
2

2
x

y Ae  
defines a family of curves. 
 
 

x
1

2

y

1

1
2-

1
2

1

1
2-

1
2

2

A = 2

A = 1

A = 

A = 
 

 
 
Now a numerical solution would be a plot of a curve that comes close to the real curve.  
The plot would start at some point on the curve, say  0 0,x y and find a sequence of 

subsequent points      1 1 2 2, , , ,......., ,i ix y x y x y lying close to the real curve.  For 

example, an approximation to the curve 
2

2
x

y e  passing through  0,1 might look like 
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x

y
2

2
x

y e=

( )0 0,x y

h

( )1 1,x y

( )2 2,x y

( )3 3,x y

h h

 
 
In other words a numerical solution to a differential equation is a process that starting 
with a point  0 0,x y  and an interval width h , so that 1 0 ,x x h   generates a sequence of 

points      0 0 1 1 2 2, , , .......x y x y x y    

 
And these points will lie close to the original function. 
 
The rule for generating successive x co-ordinates is simple-just add the interval width, 

,h to the previous value 1That is    .n nx x h     What is required is a recurrence relation 

that generates successive y coordinates, so that 1ny   will  be defined exclusively in terms 

of previous values of  and .x y   The first method for finding such a recurrence relation 
that we will consider is Euler’s method. 
 
 
Euler’s Method 
 
Recall that we are looking for a numerical solution to the 1st order differential equation 
 

 ,
dy

f x y
dx

  
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It will be convenient to write 
dy

y
dx

   

 
So our equation to be solved becomes 
 

 ,y f x y   

 
Let 1  and n nx x   be successive x  values in our approximation that is separated by interval 

width .h  
 
Then integrating both sides of this expression over that interval gives  
 

 
1 1

,
n n

n n

x x

x x

y dx f x y dx
 

    

 
The left –hand side can be integrated directly so 
 

 11 ,
n

n

n

n

x

x

x

x
f x y dxy

      

 
hence= 
 

     1

1 ,
n

n

x

n n x
y x y x f x y dx



       (1) 

 
We define the ny co-ordinates to be  ny x , so 

 

 1

1 ,
n

n

x

n n x
y y f x y dx



     

 
we have seen that Euler’s method provides a means of approximating an integral type  
 

 1n

n

x

x
f x dx



  

 
where 1n nx x h   , the interval width. 

The approximation is by means of a rectangle. 
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f x( )

x
n

x
n + 1

f x ( )n

h

 
 
The rectangle has area  nhf x  

 

So    1n

n

x

nx
f x dx hf x


  

 
There is no reason why we should not generalize this to functions of two variable 

 ,f x y and hence, by Euler’s method 

 

   1

,
n

n

x

n nx
f x dx hf x y


  

 
Now we replace the right hand side of equation (1) by this approximation to obtain 

 1 ,n n n ny y hf x y    

 
Rearranging, we obtain our recurrence reaction as 
 

 1n n n ny y hf x y    

 
In summary 
 
Starting with an initial point  0 0,x y and an internal width ,h the approximation solution 

by Euler’s method to the differential equation. 
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 ,
dy

f x y
dx

  

 
is provided by the recurrence relation 
 

 
1

1 ,
n n

n n n n

x x h

y y hf x y




 

 
 

 
Example 
 

Find an approximate solution to 
dy

xy
dx

  

 
starting at    0 0, 0,1x y  with interval width 0.05.  Plot the first four points of  

your solution and compare the -valuey at 3x  with the exact solution and calculate 

the relative error in each case 
 
Solution 
 
Firstly, recall that the exact solution to 
 
dy

xy
dx

  

is 
2

2
x

y Ae .  
 

The initial conditions
2

0 00, 1   1. so 2
xx y makes A y e     is the exact, 

particular function. 
 
Euler’s method is 
 

 
1

1 0

n n

n n n

x x h

y y hf x y




 

 
 

 
Here 0.05 soh   

 

1 0

1 0 0 0

0.05

0.05

x x

y y x y

 

 
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1

1

0 0.05 0.05

1 0.05 0 1.00

x

y

  
   

 

2 1 0.05

0.05 0.05 0.10

x x 
  

 

2 1 1 10.05

1.00 0.05 0.05 1.00

1.0025

y y x y 
   


 

3 2 0.05

0.10 0.05

0.15

x x 
 


 

3 2 2 20.05

1.0025 0.05 0.10 1.0025

1.00500625

y y x y 
   


 

Since the exact solution is 
2

2
x

y e  we obtain the following exact solutions (to 
8.S.F.) 
 

0 0

1 1

2 2

3 3

0   1

0.05  1.00125078

0.10  1.00501252

0.15  1.01131352

x y

x y

x y

x y

 
 
 
 

 

 
At  0 0x y  the % relative error is zero 

% relative error 
absolute error

100%
time value

   

 

at    1 1

1.00125078 1.00
,  % relative error   1.25% 3. . .

1.00125078
x y S F


   

 

at    2 2

1.00501252 1.00500625
,  % relative error 2.50% 3. . .

1.00501252
x y S F


   

at    3 3

1.01131352 1.00500625
,  % relative error  6.24% 3. . .

1.0113152
x y S F


   

 
So, as expected the relative error is increasing quite rapidly.  We next turn our 
attention to the truncation error in Euler’s method. 



 

 © blacksacademy.net 

 
9 

 

 
In order to do this we will introduce the symbol    f x O x . This is read 

“  f x  is the order of “.  What this means is that the growth of  f x  is 

proportional to x , that is 
 

     0  implies  f x k f x x   

 
This symbol (called the “big oh  notation”)  is used to describe  and analyze 
errors. The expression 
 

   20f x x  

 
means  f x  is proportional to 2x  and so forth. 

 
In Euler’s method, we had 
 

 1

1 ,
n

n

x

n n x
y y f x y dx



     

 
We used Euler’s method to approximate the right hand side, giving 
 

   2
1 ,n ny y hf x y O h     

 
That is, the error terms for a single step is of the order of 2h (that is proportional 
to 2h ).  This is the local truncation error, because it applies to a single step.  The 
global truncation error is the error arising from n  steps.  It is approximately 
proportional to 2nh  
 
i.e. 

global truncation error  2O nh  

 
But the number of steps, n , is a function of the step size h .  If the total interval 

over which the function is approximated is 0nx x  then 0nx x
n

h


  

so  
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      
2

0
0global truncation error n

n

x x h
O O x x h O h

h

 
     

 
 

 
since 0nx x is a constant not depending on h .  So the error carried over from one 

step to another is proportional to the step size. 
 
 
The Euler Trapezoid Method (Runge-Kutla method) 
  
The global truncation error for Euler’s method is of the order of h , which means that 
accuracy can only be obtained if h is small, which correspondingly means that there is a 
greater risk of rounding errors.  So alternative methods are sought with lower truncation 
errors.  One such method is the trapezoidal method.  Recall that in a searching for a 
recursive process to solve. 
 

 ,
dy

f x y
dx

  

we arrived at  1

1 ,
n

n

x

n n x
y y f x y dx



     

 
We approximated the right hand side by a rectangle, as in Euler’s method for numerical 
integration. In the trapezoid method we use a trapezium.   
 

1nx +nx

( )y f x=

( )n nf x y=

h

( )1 1n nf x y+ +=

 



 

 © blacksacademy.net 

 
11 

 

 
Using the trapezoid method would give  
 

      1

1 1

1
, ,

2

n

n

x

n n n nx
f x y h f x y f x y



    

 
which on substitution into  
 

 1

1 ,
n

n

x

n n x
y y f x y dx



     

 
gives 

     1 1 1

1
, ,

2n n n n n ny y h f x y f x y      

 
Unfortunately , the right hand side of this equation contains a term  1 1n nf x y  which is 

dependant on the very value, 1ny   that we are seeking to approximate.  We can get 

around this by approximating  1ny   using Euler’s method 

 

 1 ,n n n ny y hf x y    

 
which gives 
 

     1 1

1
, , ,

2n n n n n n n ny y h f x y f x y hf x y      

 
or approximation 
 

     1 1

1
, , ,

2n n n n n n n ny y h f x y f x y hf x y      

 
The recursion process 
 

 

   

1

1

11

1
, ,

2

n n

n n n n

nn n n n n

x x h

y y hf x y

y y h f x y f x y









 

 

  
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Effectively the Euler-trapezoid method finds firstly, an approximation to 1ny   using 

Euler’s method and the improves upon it by means of trapezoidal method for numerical 
integration.  For this reason the method is also called the predictor–corrector method. 
It is also called the Runge-Kutta method after the German mathematician Carl Runge 
who devised it.  It was later modified by Kutta. 
 

Example 
 

Find a numerical solution to 
dy

xy
dx

  

 

   0 0 0

2 3

with 0,1  for 0 , 0.05

0.10 and 0.15

x y x x

x x

  

 
 

by means of the Runge-Kutta method.  Calculate the relative error in the 
-coordinatesy  in each case and compare with Euler’s method. 

 
Solution 
 
Using the trapezoidal method 
 

 

   

 

1

1

1 1 1

1

1

1 1

0

0

1

1
,

2

That is

0.05

0.05

0.025

so

0

1

0 0.05 0.05

n n

n n n n

n n n n n n

n n

n n n n

n n n n n

x x h

y y hf x y

y y h f x y f x y

x x

y y x y

y y x y y

x

y

x





  





 

 

 

  

 
 

  



  
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 
1

1

2

2

1 0.05 0 1 1

1 0.025 0 0.05 1 1.00125

0.05 0.05 0.10

1.00125 0.05 0.05 1.00125 1.003 5313

y

y

x

y

    

    

  
     

 

 

 

2

3

3

3

1.00125 0.025 0.05 1.00125 0.10 1.00375313 1.00501095

0.10 0.05 0.15

1.00501095 0.05 0.10 1.00501095 1.01003600

1.00501095 0.25 0.10 1.00501095 0.15 1.01003600 1.01131111

y

x

y

y

     

  
    

     

 

 
Tabulating the results and calculating the % relative error for the trapezoidal 
method 
 
n 

nx  True value 
of 

 8. . .ny S F  

ny  by 

Euler’s 
method 

% relative 
error in 
Euler’s 
method 

ny  by 

trapezoidal 
method 

% relative 
error on 
trapezoidal 
method 

0 0 1 1 - 1 - 
1 0.05 1.00125078 1 1.25 1.00125 0.0000078 
2 0.10 1.00501252 1.0025 2.50 1.00501095 0.000156 
3 0.15 1.01131352 1.00500625 6.54 1.01131111 0.000024 
 
 
The switch to the Runge-Kutta method has improved to the accuracy 
considerably. 
 
The Runge-Kutta method can be shown to have local truncation error of the order 

2h . 
 


