## Parallel and Perpendicular Axis Theorems

## Parallel Axis Theorem

We have obtained standard results for the moment of inertia for certain bodies about an axis passing through each body's centre of mass.

We now need to find the moment of inertia of a body about an axis at a distance $d$ from the first axis. Rather than working from first principals every time we can employ the parallel axis theorem. We proceed to state this theorem, illustrate its use and then prove it.

## Parallel Axis Theorem

Suppose the moment of inertia of a body $M$ about an axis passing through its centre of mass is $M k^{2}$, then its moment of inertia about an axis parallel to this first axis but at a distance $d$ from it is $M\left(k^{2}+d^{2}\right)$.
$I=M\left(k^{2}+d^{2}\right) \quad I=M k^{2}$


## Example (1)

A rectangular grid is made of four thin uniform rods. The rectangle has length $4 a$ and width $3 a$. The longer pieces have mass $4 m$ and the shorter pieces have mass $3 m$. Find the moment of inertia of the grid about an axis through one of its corners and perpendicular to its plane.


Label the four pieces $A, B, C, D$ with centres of mass $X_{A}, X_{B}, X_{C}, X_{D}$ respectively.
Then $M_{A}=4 m, M_{B}=3 m, M_{C}=4 m, M_{D}=3 m$.
About $X_{A}, X_{B}, X_{C}, X_{D}$ moments of inertia are
$I_{A}=I_{C}=\frac{M l^{2}}{3}=\frac{4 m(2 a)^{2}}{3}=4 m\left(\frac{2 a}{\sqrt{3}}\right)^{2}$
$I_{B}=I_{D}=\frac{M l^{2}}{3}=\frac{3 m\left(\frac{3}{2} a^{2}\right)}{3}=3 m\left(\frac{3 a}{2 \sqrt{3}}\right)^{2}=3 m\left(\frac{\sqrt{3} a}{2}\right)^{2}$
$d_{A}=2 a$
$d_{B}=\sqrt{\left(\frac{3}{2} a\right)^{2}+(4 a)^{2}}=\sqrt{\left(\frac{9+32}{2}\right) a^{2}}=\sqrt{\frac{41}{2}} a$
$d_{C}=\sqrt{\frac{41}{2} a}$
$d_{D}=2 a$
By the parallel axis theorem

Copyright © Blacksacademy - September 2001

$$
\begin{aligned}
& I_{A} \text { about } \mathrm{O}=I_{A}{ }^{\prime}=M\left(k^{2}+d^{2}\right)=4 m\left(\frac{4 a^{2}}{3}+4 a^{2}\right)=\frac{64 m a^{2}}{3} \\
& I_{B} \text { about } \mathrm{O}=I_{B}{ }^{\prime}=M\left(k^{2}+d^{2}\right)=3 m\left(\frac{3 a^{2}}{4}+\frac{41 a^{2}}{2}\right)=\frac{255}{4} m a^{2} \\
& I_{C} \text { about } \mathrm{O}=I_{C}{ }^{\prime}=M\left(k^{2}+d^{2}\right)=4 m\left(\frac{4 a^{2}}{3}+\frac{41}{2} a^{2}\right)=\frac{262}{3} m a^{2} \\
& I_{D} \text { about } \mathrm{O}=I_{D}{ }^{\prime}=M\left(k^{2}+d^{2}\right)=3 m\left(\frac{3 a^{2}}{4}+4 a^{2}\right)=\frac{57 m a^{2}}{4}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
I_{A}^{\prime}+I_{B}^{\prime}+I_{C}^{\prime}+I_{D}^{\prime} & =\left(\frac{64}{3}+\frac{255}{4}+\frac{262}{3}+\frac{57}{4}\right) m a^{2} \\
& =\left(\frac{326}{3}+78\right) m a^{2} \\
& =\left(\frac{326+234}{3}\right) m a^{2} \\
& =\frac{560}{3} m a^{2}
\end{aligned}
$$

We now proceed to prove the parallel axis theorem.

## Proof of the parallel axis theorem

Let $\pi$ be a body (rod, lamina or solid) of mass $M$ with moment of inertia $I=M k^{2}$ about a perpendicular axis $z$ passing through its centre of mass.

Divide $\pi$ into small segments each of mass $M$. Let $r_{i}$ be the distance of the mass segment $M_{i}$ from $C$, the centre of mass of $\pi$.


Copyright © Blacksacademy - September 2001

Consider the weight $W_{i}$ of the mass segment $M_{i}$. The torque produced by this weight about the axis $z$ is
$c_{i}=w_{i} r_{i} \cos \theta_{i}$


Here $\theta_{i}$ is the angle made between the perpendicular from $W_{i}$ to $C$ and the line joining $C$ to $M_{i}$ and $r_{i} \cos \theta_{i} \mathrm{~s}$ is the perpendicular distance. That is
torque $=$ force $\times$ perpendicular distance
results in

$$
\begin{aligned}
c_{i} & =w_{i} r_{i} \cos \theta_{i} \\
& =M_{i} g r_{i} \cos \theta_{i} \\
& =g\left(M_{i} r_{i} \cos \theta_{i}\right)
\end{aligned}
$$

But $C$ is the centre of mass, so the sum of all the moments of the mass elements about this centre of mass is equal to 0 . i.e.
$g \sum m_{i} r_{i} \cos \theta_{i}=0$
Hence
$\sum m_{i} r_{i} \cos \theta_{i}=0$
We are given that the moment of inertia of $\pi$ about $z$ is $M k^{2}$. In terms of our mass elements $M_{i}$, distance $r_{i}$ from $c$ this means
$M k^{2}=\sum m_{i} r_{i}^{2}$

Now consider the moment of inertia of $\pi$ about another axis $l^{\prime}$ with perpendicular distance $d$ from $z$.


We consider a mass element of $M_{i}$ of $\pi$ which has perpendicular distance $r_{i}$ from $z$ and $x_{i}$ from $z^{\prime}$. The moments of inertia of $\pi$ about $z^{\prime}$ is approximately the sum of the moments of inertia of all the elements of $\pi$
$I^{\prime} \approx \sum m_{i} x_{i}^{2}$
In the limit, as $\delta v_{i}$, the volume of $m_{\mathrm{i}}$, tends to O , the approximation becomes exact
$I^{\prime}=\sum m_{i} x_{i}^{2} \quad$ when $\delta v_{i} \rightarrow O$

But $x_{i}^{2}=d^{2}+r_{i}^{2}-2 d r_{i} \cos \theta_{i}$

Thus

$$
\begin{aligned}
I^{\prime} & =\sum m_{i} x_{i}^{2} \\
& =\sum m_{i}\left(d^{2}+r_{i}^{2}-2 d r_{i} \cos \theta_{i}\right) \\
& =d^{2} \sum m_{i}+\sum m_{i} r_{i}^{2}-2 d \sum m_{i} r_{i} \cos \theta_{i}
\end{aligned}
$$

But
$\sum m_{i} r_{i} \cos \theta_{i}=0$
$\sum m_{i}=M$ the whole mass
$\sum m_{i} r_{i}^{2}=M k^{2}$
Thus
$I^{\prime}=M d^{2}+M k^{2}$
$I^{\prime}=M\left(d^{2}+k^{2}\right)$

## Perpendicular Axis Theorem

We will state the perpendicular axis theorem, illustrate it, and then finally prove it. It is best understood through illustration.

## Perpendicular Axis Theorem

Let $O x$ and $O y$ be two perpendicular axes. Let the moment of inertia of a plane body about Ox be $I_{x}$ and the moment of inertia of the same plane body about $O y$ be $I_{y}$.

Let $O z$ be the axis that is perpendicular to both $I_{x}$ and $I_{y}$. Then the moment of inertia $I_{z}$ of the body about $O z$ is
$I_{z}=I_{x}+I_{y}$

## Example (1)

A plane rectangular lamina of mass $M$ has length 6 m and breadth 4 m . Find its moment of inertia about an axis of rotation passing through its centre of mass and perpendicular to the plane.


Copyright © Blacksacademy - September 2001

Standard results give us

$$
\begin{aligned}
& I_{x}=\frac{M l^{2}}{3}=\frac{M 3^{2}}{3}=3 M \\
& I_{y}=\frac{M l^{2}}{3}=\frac{M 2^{2}}{3}=\frac{4 M}{3}
\end{aligned}
$$

Hence

$$
I_{z}=I_{x}+I_{y}=3 M+\frac{4 M}{3}=\frac{13 M}{3}
$$

## Example (2)

Find the moment of inertia of a thin uniform disc of radius $z$ and mass $M$ about a diameter.

The standard result gives us that a disc of radius $z$ and mass $M$ has moment of inertia
$I=\frac{1}{2} M l^{2}$
through an axis $z$ passing through its centre and perpendicular to its plane:


Let $x$ and $y$ be any two distinct diameters of this disc perpendicular to each other. Since they are diameters they are each other. Since they are diameters they are each perpendicular to $z$. Then by the perpendicular axis theorem
$I=I_{x}+I_{y}$

But by symmetry,

## §

$$
I_{x}=I_{y}
$$

hence
$I=2 I_{x}$
$\therefore I_{x}=\frac{1}{2} I=\frac{1}{2} \times \frac{1}{2} M l^{2}=\frac{M l^{2}}{4}$

## Proof of the Perpendicular Axis Theorem

Let $\pi$ be a plane thin uniform lamina. Let $m_{i}$ be a mass element with perpendicular distance $r_{i}$ from an axis $O z$ perpendicular to the plane and passing through $O$ in the plane.


Let $O x$ and $O y$ be two perpendicular axes lying in the plane. Let $a_{i}$ be the perpendicular lying in the plane. Let $a_{i}$ be the perpendicular distance of $m_{i}$ from $O x$ and $b_{i}$ be the perpendicular distance of $m_{i}$ from $O y$. Let
$I_{x}=\sum m_{i} a_{i}^{2}$
be the moment of inertia of $\pi$ about $O x$ and
$I_{y}=\sum m_{i} d_{i}^{2}$
be the moment of inertia of $\pi$ about $O y$.
The moment of inertia of $\pi$ about $O z$ is given by

$$
\begin{aligned}
I_{z} & =\sum m_{i} r_{i}^{2} \\
& =\sum m_{i}\left(a_{i}^{2}+b_{i}^{2}\right) \quad \text { by Pythagoras } \\
& =\sum m_{i} a_{i}^{2}+\sum m_{i} b_{i}^{2} \\
& =I_{x}+I_{y}
\end{aligned}
$$



