Parametric Equations

Curves mapped out by parameters

A curve can be defined in terms of two functions that give the x and y coordinates of a point on that curve in terms of another variable, say t, called a parameter.

Example (1)

Two coordinate functions are defined by
$x(t)=\sqrt{2} \cos t \quad y(t)=\sqrt{2} \sin t$
where t is a parameter.
(a) Complete the following table for arguments of the parameter t and the corresponding values of x and y.

t	0	45	90	135	180	225	270	315	360
$x(t)=\sqrt{2} \cos t$	$\sqrt{2}$	1							
$y(t)=\sqrt{2} \sin t$	0	1							

(b) Using the data from the table in part (a) sketch the locus of the point (x, y) as it varies with t. State what the shape is and interpret the meaning of t.

Solution
(a)

t	0	45	90	135	180	225	270	315	360
$x(t)=\sqrt{2} \cos t$	$\sqrt{2}$	1	0	-1	$-\sqrt{2}$	-1	0	1	$\sqrt{2}$
$y(t)=\sqrt{2} \sin t$	0	1	$\sqrt{2}$	1	0	-1	$\sqrt{2}$	-1	0

(b) The parameter t may be interpreted as giving the angle of a circle.

A parameter is a variable on which one or more other variables depend. Often the parameter represents time, but this is not always the case. In example (1)
$x(t)=\sqrt{2} \cos t \quad y(t)=\sqrt{2} \sin t$
the parameter represented the angle of a circle. We can eliminate t from these expressions to obtain the Cartesian equation for this circle.
$x=\sqrt{2} \cos t \quad y=\sqrt{2} \sin t$
$x^{2}=2 \cos ^{2} t \quad y^{2}=2 \sin ^{2} t$
$x^{2}+y^{2}=2\left(\cos ^{2} t+\sin ^{2} t\right)$
$x^{2}+y^{2}=2 \quad$ Since $\sin ^{2} t+\cos ^{2} t=1$
This confirms that the curve is a circle with radius $\sqrt{2}$.

Example (2)

A curve is defined by the parametric equations

$$
x=t+2 \quad y=t^{2}-2
$$

(a) By eliminating t from both expressions obtain a relationship between x and y.
(b) Use the Cartesian equation found in part (a) to sketch the curve represented by these parametric equations.

Solution

(a)

$$
\begin{align*}
& x=t+2 \tag{1}\\
& y=t^{2}-2 \tag{2}
\end{align*}
$$

From (1)
$t=x-2$
Substituting in (2)
$y=(x-2)^{2}-2$
(b) This is the equation of a parabola, with the minimum point at $x=2, y=-2$. This parabola cuts the x-axis where $x=2 \pm \sqrt{2}$. The parabola intercepts the y-axis where $x=0$ and $y=2$.

The gradient of a curve defined parametrically

The gradient of such a curve defined parametrically is found from an application of the chain rule $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{d y}{d t} \times \frac{d t}{d x}$

Example (3)

Find the gradient at the point (x, y) of the circle defined parametrically by
$x(t)=\cos t \quad y(t)=\sin t$

Solution
The gradient is $\frac{d y}{d x}$ but we first begin by differentiating each coordinate function with respect to the parameter t.

$$
\begin{aligned}
& \frac{d y}{d t}=\cos t \\
& \frac{d x}{d t}=-\sin t \\
& \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\cos t}{-\sin t}=-\cot t
\end{aligned}
$$

Example (4)

Given that $x(t)=1+t^{4}, y(t)=1-t^{2}$, find $\frac{d y}{d x}$ in terms of t.

Solution
$\frac{d y}{d t}=4 t^{3}$
$\frac{d x}{d t}=-2 t$
$\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{4 t^{3}}{-2 t}=-2 t^{2}$

Example (5) [WJEC June 2002]
A curve has parametric equations $x=a t, y=\frac{a}{t}$ where a is a non-zero constant.
(a) Show that the tangent to the curve at the point P, whose parameter is p, has equation $p^{2} y+x=2 a p$.
(b) This tangent intersects the x-axis and the y-axis at Q and R, respectively. Show that P is the mid-point of $Q R$.

Solution
(a) $x=a t \Rightarrow \frac{d x}{d t}=a$
$y=\frac{a}{t} \quad \Rightarrow \quad \frac{d y}{d t}=-a t^{-2}=-a \frac{1}{t^{2}}$
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=-\frac{1}{t^{2}}$
At the point P the gradient of the tangent is $-\frac{1}{p^{2}}$.
The point P has coordinates $\left(x_{p}, y_{p}\right)=\left(a p, \frac{a}{p}\right)$
On substitution into $y-y_{p}=m\left(x-x_{p}\right)$
$y-\frac{a}{p}=-\frac{1}{p^{2}}(x-a p)$
$p^{2} y-a p=-x+a p$
$p^{2} y+x=2 a p$
(b) The coordinates of Q are given by subsituting $y=0$ into this equation $p^{2} y+x=2 a p$ $y=0 \quad x \quad x=2 a p \quad \Rightarrow \quad Q=(2 a p, 0)$
Likewise
$x=0 \quad \Rightarrow \quad y=\frac{2 a}{p} \quad \Rightarrow \quad R=\left(0, \frac{2 a}{p}\right)$
We have also $P=\left(a p, \frac{a}{p}\right)$
$|P Q|=\sqrt{(2 a p-a p)^{2}+\left(0-\frac{a}{p}\right)^{2}}=a \sqrt{p^{2}+\frac{1}{p^{2}}}$
$|P R|=\sqrt{(a p-0)^{2}+\left(\frac{a}{p}-\frac{2 a}{p}\right)^{2}}=a \sqrt{p^{2}+\frac{1}{p^{2}}}$
Hence
$|P Q|=|P R|$

