Polynomial Division

Prerequisites

You should be familiar with multiplying out brackets of algebraic terms.

Example (1)

Expand and collect $(x-1)\left(x^{2}+3 x+2\right)+5$.

Solution

$$
\begin{aligned}
(x-1)\left(x^{2}+3 x+2\right)+5 & =x^{3}+3 x^{2}+2 x-x^{2}-3 x-2+5 \\
& =x^{3}+2 x^{2}-x+3
\end{aligned}
$$

You should also be familiar with long division.

Example (2)

(a) Use long division to find $56293 \div 13$. Show your working.
(b) What is the remainder when $56293 \div 13$?

Solution
(a) $\begin{gathered}\frac{4328}{43} \\ \underline{52}\end{gathered}$

42
$\underline{39}$
37
$\underline{28}$
113
$\underline{104}$
9
(b) The remainder is 9 .

There are terms to describe the various numbers that appear in a long division.
$\begin{array}{cc} & \text { QUOTIENT } \\) & \text { DIVIDEND } \\ \vdots & \\ & \text {------------ }\end{array}$
REMAINDER

In the last example the divisor is 13 , the dividend is 56273 , the quotient is 4328 and the remainder is 9. In the first example we saw that $(x-1)\left(x^{2}+3 x+2\right)+5=x^{3}+2 x^{2}-x+3$.

Example (3)

Given $(x-1)\left(x^{2}+3 x+2\right)+5=x^{3}+2 x^{2}-x+3$ state
(a) the divisor
(b) the dividend
(c) the quotient
(d) the remainder
when $x^{3}+2 x^{2}-x+3$ is divided by $(x-1)$.

Solution

$$
(x-1)\left(x^{2}+3 x+2\right)+5=x^{3}+2 x^{2}-x+3
$$

may be rewritten as
$(x - 1) \longdiv { x ^ { 3 } + 2 x ^ { 2 } - x + 3 }$
5
whence
(a) divisor $x-1$
(b) dividend $x^{3}+2 x^{2}-x+3$
(c) quotient $x^{2}+3 x+2$
(d) remainder 5

We now seek a technique whereby we can divide one polynomial by another.

Polynomial division

Polynomial division mimics the process of long division.

Example (4)

By means of polynomial division find
$\left(x^{3}+2 x^{2}-x+3\right) \div(x-1)$

Solution
The first step is to write out the problem as if it were a problem in long division.
$(x - 1) \longdiv { x ^ { 3 } + 2 x ^ { 2 } - x + 3 }$
The problem is to find the quotient and remainder. Just as with long division, we take the divisor $(x-1)$ and ask how many times it goes into the leading term of the dividend $\left(x^{3}+2 x^{2}-x+3\right)$. The answer is x^{2}.

$$
\begin{aligned}
& (x - 1) \longdiv { x ^ { 3 } + 2 x ^ { 2 } - x + 3 } \\
& \frac{x^{3}-x^{2}}{3 x^{2}-x}
\end{aligned}
$$

As the diagram shows we continue to mimic long division by multiplying x^{2} by the divisor $(x-1)$ and subtracting the product from the dividend. We then bring down the next term, and repeat the process.

$$
\begin{aligned}
& (x - 1) \longdiv { x ^ { 2 } + 3 x } \\
& \frac{x^{3}-x^{2}}{3 x^{2}-x} \\
& 3 x^{2}-3 x \\
& 2 x+3
\end{aligned}
$$

Here $x-1$ goes $3 x$ times into $3 x^{2}-x$, so we add $3 x$ to the quotient and subtract the product of $3 x$ and $(x-1)$ from the dividend. The remainder is $2 x+3$ and the divisor may still go into this, so we repeat the process a final time.

$$
\begin{aligned}
& (x - 1) \longdiv { x ^ { 2 } + 3 x + 2 } \longdiv { x ^ { 3 } + 2 x ^ { 2 } - x + 3 } \\
& x^{3}-x^{2} \\
& 3 x^{2}-x \\
& 3 x^{2}-3 x \\
& 2 x+3 \\
& \underline{2 x-2} \\
& 5
\end{aligned}
$$

Here the remainder is 5 , and as the divisor cannot be further divided, the division has come to an end. We have found that $x^{3}+2 x^{2}-x+3=(x-1)\left(x^{2}+3 x+2\right)+5$.

Example (5)

By means of polynomial division find the quotient and remainder when $\left(2 x^{3}-x^{2}-x+18\right) \div(x+2)$. Is $x+2$ a factor of $2 x^{3}-x^{2}-x+18$?

Solution

$$
\begin{array}{r}
x + 2 \longdiv { 2 x ^ { 2 } - 5 x + 9 } \\
\frac{2 x^{3}-x^{2}-4 x^{2}}{-5 x^{2}-x} \\
\frac{-5 x^{2}-10 x}{9 x}+18 \\
\underline{9 x+18}
\end{array}
$$

The quotient is $2 x^{2}-5 x+9$ and the remainder is 0 . Because the remainder is $0, x+2$ is a factor of $2 x^{3}-x^{2}-x+18$.

When there are missing terms in the dividend

If a term does not appear in the dividend, then we add it in with a zero coefficient. For example, if the dividend is $x^{5}+3 x^{3}-2 x+1$ write this first as
$x^{5}+0 x^{4}+3 x^{3}+0 x^{2}-2 x+1$
Note that the missing powers of x have been added back in with zero coefficients. This facilitates the working, as the next example shall show.

Example (6)

Divide $x^{5}+3 x^{3}-2 x+1$ by $x-2$.

Solution
First write $x^{5}+3 x^{3}-2 x+1$ as $x^{5}+0 x^{4}+3 x^{3}+0 x^{2}-2 x+1$

$x^{5}+3 x^{3}-2 x+1=(x-2)\left(x^{4}+2 x^{3}+7 x^{2}+14 x+26\right)+53$

The general form of polynomial division

Notice that the general form of a polynomial division looks like

where $f(x)$ is the dividend, $(x-\alpha)$ is the divisor, $g(x)$ is the quotient, and R is the remainder. We can also write this as
$f(x)=(x-\alpha) g(x)+R$
which will be very useful when we come to consider the further topic under the heading of the Remainder and Factor theorems.

