## Probability generating functions

## Introduction

We will introduce the idea of a probability generating function, by first considering a simple example of a discrete probability distribution.

## Example

A discrete random variable X has the following probability distribution.

| $X$ | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| $P\left(X=x_{i}\right)$ | $1 / 8$ | $1 / 8$ | $1 / 4$ | $1 / 2$ |

Find $E(X)$ and $\operatorname{Var}(X)$

$$
\begin{aligned}
E(X) & =\sum x \cdot P(X=x) \\
& =1 \times \frac{1}{8}+2 \times \frac{1}{8}+3 \times \frac{1}{4}+4 \times \frac{1}{2} \\
& =\frac{1+2+6+16}{8}=\frac{25}{8} \\
E\left(X^{2}\right) & =\sum x^{2} \cdot P(X=x) \\
& =1^{2} \times \frac{1}{8}+2^{2} \times \frac{1}{8}+3^{2} \times \frac{1}{4}+4 \times \frac{1}{2} \\
& =\frac{1+2+6+16}{8}=\frac{87}{8}
\end{aligned}
$$

$$
\operatorname{Var}(X)=E\left(X^{2}\right)+[E(X)]^{2}=\frac{87}{8}-\left(\frac{25}{8}\right)^{2}=\frac{696-625}{16}=\frac{71}{16}
$$

These are calculations that the student should have encountered at an earlier stage. We now introduce, however, a function $\mathrm{G}_{\mathrm{x}}(\mathrm{t})$, called the probability generating function, which is

$$
G_{x}(t)=E\left(t^{x}\right)=\sum t^{x} \cdot P(X=x)
$$

We can form a table for our current example as follows:

| $x$ | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- |
| $P\left(X=x_{i}\right)$ | $1 / 8$ | $1 / 8$ | $1 / 4$ | $1 / 2$ |
| $t^{x}$ | $t$ | $t^{2}$ | $t^{3}$ | $t^{4}$ |

Thus

$$
\begin{aligned}
G x(t) & =E\left(t^{x}\right) \\
& =\sum t^{x} \cdot p(x) \\
& =\frac{1}{8} t+\frac{1}{8} t^{2}+\frac{1}{4} t^{3}+\frac{1}{2} t^{4}
\end{aligned}
$$

Then, suppose we differentiate $G x(t)$

$$
G_{x}^{\prime}(t)=\frac{1}{8}+\frac{1}{8} \cdot 2 t+\frac{1}{4} \cdot 3 t^{2}+\frac{1}{2} \cdot 4 t^{3}
$$

The coefficients of the series $t, 2 t, 3 t^{2}$ and $4 t^{3}$ are the same as those we met in the definition of $E(X)$. That is,
$E(X)=G_{x}{ }^{\prime}(1)$
That is, when we substitute $t=1$ into $G_{x}^{\prime}(t)$ we obtain
$E(t)=G_{x}^{\prime}(1)=\frac{1}{8}+\frac{2}{8}+\frac{3}{4}+\frac{4}{2}=\frac{25}{8}$
Differentiating $G_{x}^{\prime}(t)$ gives
$G_{x}^{\prime \prime}(\mathrm{t})=\frac{1}{8} \cdot 2+\frac{1}{4} \cdot 3 \cdot 2 \mathrm{t}+\frac{1}{2} \cdot 4 \cdot 3 \mathrm{t}^{2}$
Then $G_{x}^{\prime \prime}(1)=\frac{1}{8} \cdot 2+\frac{1}{4} \cdot 3 \cdot 2+\frac{1}{2} \cdot 4 \cdot 3$
Now consider $G_{x}^{\prime \prime}(1)+G_{x}^{\prime}(1)$

$$
G_{x}^{\prime \prime}(1)+G_{x}^{\prime}(1)=\frac{1}{8} \cdot 2+\frac{1}{4} \cdot 3 \cdot 2+\frac{1}{2} \cdot 4 \cdot 3+\frac{1}{8}+\frac{1}{8} \cdot 2+\frac{1}{4} \cdot 3+\frac{1}{2} \cdot 4
$$

This could be written

$$
G_{x}^{\prime \prime}(1)+G_{x}^{\prime}(1)=\frac{1}{8}+\frac{1}{8} \cdot 2^{2}+\frac{1}{4} \cdot 3^{2}+\frac{1}{2} \cdot 4^{2}
$$

This is equal to $E\left(X^{2}\right)$. That is
$G_{x}^{\prime \prime}(1)+G_{x}^{\prime}(1)=E\left(X^{2}\right)$
Hence
$\operatorname{Var}(X)=G_{x}^{\prime \prime}(1)+G_{x}^{\prime}(1)-\left[G_{x}^{\prime}(1)\right]^{2}$

This illustrates that probability generating functions could be useful short-cuts to finding $E(X)$ and $\operatorname{Var} X$. But in our current example the "short-cut" seems far from short! The real advantage from probability generating functions comes from the ability to write certain probability distributions as powers of a generating series. We will show this later, but firstly, we offer a formal definition of a probability generating function.

## Probability generating functions

Let $X$ be a discrete random variable. Let $P\left(X=x_{i}\right)$ be the probability that $X$ takes the value $x_{i}$. Then the probability generating function defined for $X$ is the function
$G_{x}(t)=\sum_{i=o}^{n} t^{x i} . P\left(X=x_{i}\right)=E\left(t^{x}\right)$

This is a function of two variables. The first is $x_{i}$ the values that the random variable $X$ can take. The second is $t$, which is introduced to create the idea of a family of related series.
The main properties of probability generating functions are as follows.

## First Property

$G_{x}(1)=1$

Proof

$$
\begin{aligned}
G_{x}(1) & =\left.E\left(t^{x}\right)\right|_{t=1} \\
& =p_{1} t^{1}+p_{2} t^{2}+p_{3} t^{3}+\ldots+\left.p_{n} t^{n}\right|_{t=1} \\
& =p_{1}+p_{2}+p_{3}+\ldots p_{n} \\
& =1
\end{aligned}
$$

Here we use the abbreviation $p_{i}=P\left(X=x_{i}\right)$ for the probability that $X$ takes the value $x_{i}$. The symbol
$\left.\right|_{t=1}$
means that we evaluate the expression by substituting $\mathrm{t}=1$
© blacksacademy.net

The last line follows since the sum of a probability distribution is 1 . This first result could be said to state the obvious, but it is a property of a probability generating function, and we must include it.

## Second Property

$G_{x}^{\prime}(1)=E(X)$
Proof

$$
\begin{aligned}
G_{x}^{\prime}(1) & =\left.G_{x}^{\prime}(t)\right|_{t=1} \\
& =\frac{d}{d t} G \times\left.(t)\right|_{t=1} \\
& =\left.\frac{d}{d t}\left\{p_{1} t+p_{2} t^{2}+p_{3} t^{3}+\ldots p_{k} t^{k}+\ldots+p_{n} t^{n}\right\}\right|_{t=1} \\
& =p_{1}+2 p_{2} t+2 p_{2} t^{2}+\ldots k p_{k} t^{k-1}+\ldots+\left.n p_{n} t^{n-1}\right|_{t=1} \\
& =p_{1}+2 p_{2}+3 p_{3}+\ldots+k p_{k}+n p_{n} \\
& =\sum_{i-1}^{n} x_{i} p_{i}=E(X)
\end{aligned}
$$

Third Property
$G_{x}^{\prime \prime}(1)=E\left(X^{2}\right)-E(X)$
Proof
We will write this as $E\left(X^{2}\right)=G_{x}^{\prime \prime}(1)+E(X)$
Then

$$
\begin{aligned}
G_{x}^{\prime \prime}(1) & =\left.\frac{d}{d t^{2}} G_{x}(t)\right|_{t=1} \\
& =\left.\frac{d}{d t}\left\{p_{1}+2 p_{2} t+3 p_{3} t^{2}+\ldots+p_{k} t^{k-1}+\ldots+p_{n} t^{n-1}\right\}\right|_{t=1} \\
& =2 p_{2}+6 p_{3} t+\ldots+k(k-1) p_{k} t^{k-2}+\ldots+\left.n(n-1) p_{n} t^{n-2}\right|_{t=1} \\
& =2 p_{2}+6 p_{3}+\ldots+k(k-1) p_{k}+\ldots+n(n-1) p_{n}
\end{aligned}
$$

Therefore
© blacksacademy.net

$$
\begin{aligned}
G_{x}^{\prime \prime}(1)+E(X) & =2 p_{2}+6 p_{3}+\ldots+k(k-1) p_{k}+\ldots+n(n-1) p_{n} \\
& =P_{1}+4 P_{2}+9 P_{3}+\ldots+K P_{k}+\ldots+N P_{n} \\
& =P_{1}+4 P_{2}+9 P_{3}+\ldots+P_{k}(K(K-1)+K)+\ldots+P_{n}(n(n-1)+n) \\
& =p_{1}+4 p_{2}+9 p_{3}+\ldots+k^{2} p_{k}+\ldots+n^{2} p_{n} \\
& =\sum_{i=1}^{n} x_{i} p_{i} \\
& =E\left(X^{2}\right)
\end{aligned}
$$

## Fourth Property

$\operatorname{Var}(\mathrm{X})=G_{x}^{\prime \prime}(1)+G_{x}^{\prime}(1)-\left[G_{x}^{\prime}(1)\right]^{2}$
Proof

$$
\begin{aligned}
& \operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2} \\
& =G_{x}^{\prime \prime}(1)+G_{x}^{\prime}(1)-\left[G_{x}^{\prime}(1)\right]^{2}
\end{aligned}
$$

We now proceed to apply these properties to the uniform (uniform), Binomial, Geometric and Poisson distributions to find the mean and variance in each case.

## Uniform, discrete distribution

Let X be a random variable with a uniform discrete distribution. Then

$$
p_{i}=P(X=i)=\left\{\begin{array}{cc}
\frac{1}{n} & \text { for } i=1,2,3, \ldots, n \\
0 & \text { otherwise }
\end{array}\right.
$$

The probability generating function is

$$
\begin{aligned}
G_{x}(t) & =\sum_{i=0}^{n} t^{i} \cdot \frac{1}{n} \\
& =t \frac{1}{n}+t^{2} \frac{1}{n}+t^{3} \frac{1}{n}+\ldots+t^{n} \frac{1}{n} \\
& =\frac{1}{n}\left(t+t^{2}+t^{3}+\ldots+t^{n}\right)
\end{aligned}
$$

$t, t^{2}, t^{3}, \ldots, t^{n}$ is a geometric series with first term $t$, ratio $t$, and $n$ terms. Hence
© blacksacademy.net
$t+t^{2}+\ldots t^{n}=\sum_{i=1}^{n} t^{i}=\frac{t\left(1-t^{n}\right)}{1-t}$
by the result for the sum of a geometric series.
Then

$$
\begin{aligned}
E(X) & =G_{x}^{\prime}(1) \\
& =\left.\frac{1}{n} \cdot \frac{d}{d t}\left(t+t^{2}+t^{3}+\ldots+t^{n}\right)\right|_{t=1} \\
& =\left.\frac{1}{n}\left(1+2 t+3 t^{2}+\ldots+n t^{n-1}\right)\right|_{t=1} \\
& =\frac{1}{n}(1+2+3+\ldots+n) \\
& =\frac{1}{n} \frac{(n+1) n}{2} \quad \text { since } \sum_{i=1}^{n} \frac{n(n+1)}{2} \\
& =\frac{n+1}{2}
\end{aligned}
$$

$$
G_{x}^{\prime \prime}(1)=\left.\frac{1}{n} \cdot \frac{d}{d t}\left(1+2 t+3 t^{2}+\ldots+n t^{n-i}\right)\right|_{t=1}
$$

$$
=\left.\frac{1}{n}\left(2+6 t+\ldots+n(n-1) t^{n-2}\right)\right|_{t=1}
$$

$$
=\frac{1}{n}(2+6+\ldots n(n-1))
$$

$$
E\left(X^{2}\right)=G_{x}^{\prime \prime}(1)+G_{x}^{\prime}(1)
$$

$$
=\frac{1}{n}(2+6+\ldots+n(n-1))+\frac{1}{n}(1+2+3+\ldots+n)
$$

$$
=\frac{1}{n}\left(1+4+\ldots+n^{2}\right)
$$

$$
=\frac{1}{n} \cdot \frac{1}{6} n(n+1)(2 n+1) \quad \text { since } \sum_{i=1}^{n} i^{2}=\frac{1}{6} n(n+1)(n+2)
$$

$$
=\frac{1}{6}(n+1)(2 n+1)
$$

© blacksacademy.net

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left(X^{2}\right)-[E(X)]^{2} \\
& =\frac{1}{6}(n+1)(2 n+1)-\frac{(n+1)^{2}}{4} \\
& =\frac{1}{12}[2(n+1)(2 n+1)-3(n+1)(n+1)] \\
& =\frac{1}{12}[(n+1)(4 n+2-3 n-3)] \\
& =\frac{1}{12}[(n+1)(n-1)] \\
& =\frac{n^{2}-1}{12}
\end{aligned}
$$

## Binomial Distribution

Recall that the discrete random variable $X$ follows the Binomial distribution when it arises from the application of n successive trials to a situation where at each trial there is a probability $p$ of a success and $q=1-p$ of a failure. Then the probability of r successes is given by
$P(X=r)={ }^{n} C_{r} p^{r} q^{n-r}$
where ${ }^{n} C_{r}=\frac{n!}{r!(n-r)!}$ is the Binomial coefficient.
We write $X \sim B(n, p)$
Then the probability generating function for $X$ is
$G_{x}(t)=\sum_{r=0}^{n}{ }^{n} C_{r} p^{r} q^{n-r} t^{r}$
The series $\sum_{r=0}^{n}{ }^{n} C_{r} p^{r} q^{n-r}$ comes from expanding the expression $(p+q)^{n}$ by the
Binomial Theorem. Hence, the probability generating function for $B(n, p)$ is
$G_{x}(t)=(p t+q)^{n}$
Thus, the Binomial distribution is that distribution whose probability generating function is $(p t+q)^{n}$
© blacksacademy.net

We now use the properties of a probability generating function to find $E(X)$ and $\operatorname{Var}(X)$ for $B(n, p)$.

$$
\begin{aligned}
E(X) & =\left.G_{x}^{\prime}(t)\right|_{t=1} \\
& =\left.\frac{d}{d t}(p t+q)^{n}\right|_{t=1} \\
& =\left.n(p t+q)^{n-1} \cdot p\right|_{t=1} \\
& =n(p t+q) \cdot p \\
& =n p \quad \text { since } p+q=1 \\
\left.G_{x}^{\prime \prime}(t)\right|_{t=1} & =\left.\frac{d}{d t} n p(p t+q)^{n-1}\right|_{t=a} \\
& =n(n-1) p^{2}(p+q) \\
& =n(n-1) p^{2} \\
\operatorname{Var}(X) & =G_{x}^{\prime \prime \prime}(1)+G_{x}^{\prime}(1)-\left[G_{x}^{\prime}(1)\right]^{2} \\
& =n(n-1) p^{2}+n p-(n p)^{2} \\
& =n^{2} p^{2}-n p^{2}+n p-n^{2} p^{2} \\
& =n p-n p^{2} \\
& =n \cdot p \cdot(1-p) \\
& =n p q \quad \text { since } q=1-p
\end{aligned}
$$

## Geometric Distribution

The discrete random variable $X$ follows the Geometric distribution when it arises from the application of possibly infinite trials to a situation where at each trial there is a probability p of a success and $q=1-p$ of a failure. The trials are repeated until a success is obtained.

The probability that $r$ trials will be necessary until a success is obtained is given by
$P(X=r)=p q^{r-1}$
We write

$$
X \sim \operatorname{Geo}(p)
$$

The probability generating function for the Geometric distribution is
© blacksacademy.net

$$
\begin{aligned}
G_{x}(t) & =\sum_{r=1}^{n} p q^{r-1} \cdot t^{r} \\
& =p t+p q t^{2}+p q^{2} t^{3}+\ldots+p q^{r-1} t^{r}+\ldots
\end{aligned}
$$

This is, not surprisingly, a geometric series with first term $p t$ and ratio $q t$.
The sum to infinity is
$G_{x}(t)=S_{\infty}=\frac{p t}{1-q t}$
Then

$$
\begin{aligned}
E(X) & =\left.G_{x}^{\prime}(t)\right|_{t=1} \\
& =p(1-q t)^{-1}+\left.p t(1-q t)^{-2} \cdot q\right|_{t=1} \\
& =\frac{p}{1-q t}+\left.\frac{p q t}{(1-q t)^{2}}\right|_{t=1} \\
& =\frac{p}{1-q}+\frac{p q}{(1-q)^{2}} \\
& =\frac{p}{p}+\frac{p q}{p^{2}} \quad \text { since } p=1-q \\
= & \frac{p+q}{p} \\
= & \frac{1}{p} \\
\left.G_{X}^{\prime \prime}(t)\right|_{t=1} & =\left.\frac{d}{d t}\left(\frac{p}{1-q t}+\frac{p q t}{(1-q t)^{2}}\right)\right|_{t=1} \\
& =\left.\frac{d}{d t}\left(\frac{p(1-q t)+p q t}{(1-q t)^{2}}\right)\right|_{t=1} \\
& =\left.\frac{d}{d t}\left(\frac{p-p q t+p q t}{(1-q t)^{2}}\right)\right|_{t=1} \\
& =\left.\frac{d}{d t} p(1-q t)^{-2}\right|_{t=1} \\
& =\left.2 p q t(1-q t)^{-3}\right|_{t=1}=\frac{2 p q}{(1-q)^{3}}=\frac{2 q}{p^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}(X) & =G_{x}^{\prime \prime}(1)+G_{x}^{\prime}(1)-\left[G_{x}^{\prime}(1)\right]^{2} \\
& =\frac{2 q}{p^{2}}+\frac{1}{p}+\left(\frac{1}{p}\right)^{2} \\
& =\frac{2 q+p-1}{p^{2}} \\
& =\frac{2 q-q}{p^{2}} \\
& =\frac{q}{p^{2}}
\end{aligned}
$$

## Poisson Distribution

A discrete random variable $X$ follows the Poisson distribution when $X$ is such that it can take values $r=0,1,2, \ldots$ and the probability that X takes the value is given by $p(r)=P(X=r)=\frac{\lambda^{r} e^{-\lambda}}{r!} \quad r=0,1,2, \ldots$

We write $X \sim \operatorname{Po}(\lambda)$.
The probability generating function for the Poisson distribution is given by:-

$$
G_{x}(t)=\sum_{r=0}^{\infty} \frac{\lambda^{r} e^{-\lambda}}{r!} t^{r}
$$

Then

$$
\begin{aligned}
E(X) & =\left.G_{x}^{\prime}(t)\right|_{t=1} \\
& =\left.\frac{d}{d t}\left(e^{-\lambda}+\lambda e^{-\lambda} t+\frac{\lambda^{2}}{2!} e^{-\lambda} t^{2}+\ldots\right)\right|_{t=1} \\
& =\left.\left(\lambda e^{-\lambda}+\lambda^{2} e^{-\lambda} t+\frac{\lambda^{3}}{2!} e^{-\lambda} t^{2}+\ldots\right)\right|_{t=1} \\
& =e^{-\lambda} \cdot\left(\lambda+\lambda^{2}+\frac{\lambda^{3}}{2!}+\frac{\lambda^{4}}{3!}+\ldots\right)=\lambda e^{-\lambda}\left(1+\lambda+\frac{\lambda^{2}}{2!}+\frac{\lambda^{3}}{3!}+\ldots\right) \\
& =\lambda e^{-\lambda} e^{\lambda} \quad \text { since } e^{\lambda}=1+\lambda+\frac{\lambda^{2}}{2!}+\frac{\lambda^{3}}{3!}+\ldots \\
& =\lambda
\end{aligned}
$$

$$
\begin{aligned}
G_{x}^{\prime \prime}(t) & =\left.\frac{d}{d t}\left(\lambda e^{-\lambda}+\lambda^{2} e^{-\lambda} t+\frac{\lambda^{3}}{2!} e^{-\lambda} t^{2}+\frac{\lambda^{4}}{3!} e^{-\lambda} t^{3}+\ldots\right)\right|_{t=1} \\
& =\lambda^{2} e^{-\lambda}+\lambda^{3} e^{-\lambda} t+\frac{\lambda^{4}}{2!} e^{-\lambda} t^{2}+\frac{\lambda^{5}}{3!} e^{-\lambda} t^{3}+\left.\ldots\right|_{t=1} \\
& =\lambda^{2} e^{-\lambda}+\lambda^{3} e^{-\lambda}+\frac{\lambda^{4}}{2!} e^{-\lambda}+\frac{\lambda^{5}}{3!} e^{-\lambda} \\
& =\lambda^{2} e^{-\lambda}\left(1+\lambda+\frac{\lambda^{2}}{2!}+\frac{\lambda^{3}}{3!}=\ldots\right) \\
& =\lambda^{2} e^{-\lambda} e^{\lambda} \\
& =\lambda^{2}
\end{aligned}
$$

Then

$$
\begin{gathered}
\operatorname{Var}(X)=G_{x}^{\prime \prime}(1)+G_{x}^{\prime}(1)-\left[G_{x}^{\prime}(1)\right]^{2} \\
=\lambda^{2}+\lambda-\lambda^{2}=\lambda
\end{gathered}
$$

## The probability generating function of the sum of two independent variables

We begin our discussion of the sum of two independent variables by introducing an example.

## Example

In a simulation of the Second World War London will be "successfully" blitzed when a five or a six has been obtained twice from the repeated throw of a six-sided, fair dice. Let Y be the random variable representing the number of throws up to and including the occurrence of the second successful throw.
i. Find the probability generating function $G_{\mathrm{x}}(t)$ for the geometric series that arises with parameter $1 / 3$
ii. Hence, find the probability generating function of $X$.
iii. Find the mean of $Y$.

Answer
(i) The geometric series generated by parameter $\frac{1}{3}$ is $X \sim \mathrm{Geo}(1 / 3)$.

Then
© blacksacademy.net

$$
P(X=r)=p q^{r-1}=\frac{1}{3}\left(\frac{2}{3}\right)^{r-1}
$$

The probability generating function is

$$
G_{x}(t)=\frac{p t}{1-q t}=\frac{t / 3}{1-2 t / 3}
$$

(ii) We begin by drawing a probability tree for Y :


Once a 5 or 6 has been thrown once the next 5 or 6 terminates the process, so after any 5,6 the probability tree follows the geometric series with probability generating function $G_{\mathrm{x}}(t)$ of the first part of the question. Hence

$$
\begin{aligned}
G_{y}(t) & =p t G_{x}(t)+p q t^{2} G_{x}(t)+p q^{2} t^{3} G_{x}(t)+\ldots . \\
& =G_{x}(t)\left(p t+p q t^{2}+p q^{2} t^{3}+\ldots .\right) \\
& =G_{x}(t) \cdot G_{x}(t) \\
& =\frac{t / 3}{1-2 t / 3} \cdot \frac{t / 3}{1-2 t / 3} \\
& =\frac{(t / 3)^{2}}{(1-2 t / 3)^{2}}
\end{aligned}
$$

$$
\text { (iii) } \begin{aligned}
\left.G_{y}^{\prime}(t)\right|_{t=1} & =\left.\frac{d}{d t} \frac{t^{2}}{9}\left(1-\frac{2 t}{3}\right)^{-2}\right|_{t=1} \\
& =\frac{2 t}{9}\left(1-\frac{2 t}{3}\right)^{-2}+\left.\frac{2 t^{2}}{9}\left(1-\frac{2 t}{3}\right)^{-3} \cdot \frac{2}{3}\right|_{t=1} \\
& =\frac{2}{9}\left(\frac{1}{3}\right)^{-2}+\frac{4}{27}\left(\frac{1}{3}\right)^{-3} \\
& =2+4=6
\end{aligned}
$$

The second part of this question could have been solved more efficiently without recourse to a diagram of the probability tree. The first and second throws of the dice are each independent of the other. Both follow the geometric distribution $X \sim$ $\mathrm{Geo}(1 / 3)$ with probability generating function
$G_{x}(t)=\frac{t / 3}{1-2 t / 3}$.
We require the probability distribution of a success in the first and second throws. Hence, we seek the probability generating function corresponding to the variable $Y=X+X$.

The following general result would enable us to write this down immediately:

## Result

The probability generating function of the sum of the two independent random variables is the product of the probability generating functions of these two variables. That is

$$
G_{(X+Y)}(t)=G_{x}(t) G_{y}(t)
$$

Hence, in the above example, since $Y=X+X$

$$
\begin{aligned}
G_{y}(t)=G_{(X+X)}(t) & =G_{X}(t) \cdot G_{x}(t) \\
& =\frac{(t / 3)^{2}}{(1-2 t / 3)^{2}}
\end{aligned}
$$

We will now seek to justify this result that
$G_{(X+Y)}(t)=G_{x}(t) G_{y}(t)$
© blacksacademy.net

Firstly, we ask, what is the probability distribution of the variable $X+Y$ ? It is the distribution of probabilities of each pair of events $X=x_{i}, Y=y_{i}$. That is, $P\left(x_{i}, y_{i}\right)$ is the probability that $X$ takes the value $x_{i}$ and $Y$ takes the value $y_{i}$. If $x_{i}$ and $y_{i}$ are independent
$P\left(x_{i}\right.$ and $\left.y_{i}\right)=P\left(x_{i}\right) \cdot P\left(y_{i}\right)$
Then, let
$G_{x}(t)=\sum_{i=0}^{\infty} p\left(x_{i}\right) \cdot t^{i}=p\left(x_{0}\right) \cdot t^{0}+p\left(x_{1}\right) \cdot t^{1}+p\left(x_{2}\right) \cdot t^{2}+\ldots$
$G_{y}(t)=\sum_{j=0}^{\infty} p\left(y_{i}\right) \cdot t^{i}=p\left(y_{0}\right) \cdot t^{0}+p\left(y_{1}\right) \cdot t^{1}+p\left(y_{2}\right) \cdot t^{2}+\ldots$
So

$$
\begin{aligned}
G_{x}(t) \cdot G_{y}(t) & =\sum_{i=0}^{\infty} p\left(x_{i}\right) \cdot t^{i} \\
& =\left(p\left(x_{0}\right) \cdot t^{0}+p\left(x_{1}\right) \cdot t^{1}+p\left(x_{2}\right) \cdot t^{2}+\ldots\right) \cdot\left(p\left(y_{0}\right) \cdot t^{0}+p\left(y_{1}\right) \cdot t^{1}+p\left(y_{2}\right) \cdot t^{2}+\ldots\right) \\
& =p\left(y_{0}\right) p\left(x_{0}\right) t^{0} t^{0}+p\left(y_{1}\right) p\left(x_{1}\right) t^{1} t^{1}+p\left(y_{2}\right) p\left(x_{2}\right) t^{2} t^{2}+\ldots
\end{aligned}
$$

The following diagram illustrates this process


Following the arrows ensures that all the terms are visited once. This is an example of a diagonalisation process.

The entries in the table are the entries for the distribution $X+Y$; they arise from the product of $G_{x}(t)$ and $G_{y}(t)$; hence the table demonstrates that, provided $X$ and $Y$ are independent
$G_{(X+Y)}(t)=G_{x}(t) G_{y}(t)$
© blacksacademy.net

