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Rational Functions and their 
Decomposition into Partial Fractions 
 
 
Rational functions 
 
In this context the term rational function denotes a function that is expressed as a ratio of any 

one polynomial to another, each polynomial having rational coefficients. – that is coefficients 

which can be expressed as fractions.   For example 

   


  

2

3 2

3 2

4 6

x x
f x

x x x
 

is a rational function.  As with rational numbers, a rational function is a ratio of a numerator to a 

denominator.  In the case of a rational function, numerator and denominator are functions.  In the 

above example the numerator is     2 3 2g x x x  and the denominator is      3 24 6h x x x x .  

So the general form of a rational function is 

   
 


g x

f x
h x

 

where     and g x h x  are polynomial functions.   

 

 

Factorisation of the denominator 
 

It is a very important theorem of algebra that every polynomial function can be factorised into 

factors where each factor is either a linear or at most quadratic factor.  That is, every polynomial 

can be written as: 

          1 2 . nf x g x g x g x  

where each     is either a linear factor of the form ig x x  or a quadratic factor of the form 

 2ax bx c .  When the factorisation has proceeded as far as it can, any remaining quadratic 

factors would themselves be incapable of being further decomposed into linear factors with real 

coefficients.  So in such a case they would have negative discriminant    2 4 0b ac .  (These 

quadratic factors can in fact be further factorised into linear factors with complex coefficients; 

however, in this context we leave them as they are.)  It is not immediately obvious that all 

polynomial functions can be decomposed into linear and quadratic factors (with real coefficients), 

and the proof of this result, known as the Fundamental Theorem of Algebra, is the subject of 
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higher-level study.  In the context of this chapter, the significance is that every denominator of a 

rational function can be expressed as a multiple of linear and quadratic factors.  Here we are also 

only concerned with denominators that are no more complicated than 

     
   
   

  

 

 

2

2 2

ax b cx d ex f

ax b cx d

ax b x c

 

For instance, the denominator in our example where 

   


  

2

3 2

3 2

4 6

x x
f x

x x x
 

 can be decomposed as follows: 

           3 24 6 3 2 1x x x x x x  

 

 

The technique of partial fractions 
 
Because denominators can be decomposed it becomes possible to split rational functions into a 

series of simpler rational functions where the denominators are linear and quadratic functions.  

This is interesting algebra in its own right, but has practical applications in firstly the sketching of 

graphs of rational functions, and secondly in finding their integrals.  The aim is to rewrite rational 

functions that cannot directly be integrated into the sum of simpler expressions that can.  The 

technique for doing this is called decomposition into partial fractions.  Firstly, we rewrite the 

denominator of the rational function in terms of linear and quadratic factors.  The technique will 

decompose the rational function into a sum of terms with each of these linear and quadratic 

factors as separate denominators.  The result would look something like 

 
 

   
   
   

2
f x

x x ax bx c
 

We will demonstrate an algebraic technique for finding the numerators for each part of this 

expression.  In order to find these numerators we work backwards.  That is, we assume that the 

numerator has a certain form and solve some algebra to discover the precise form.  Let us begin 

with a simple example. 

 

Example (1) 

Express 
  2

4

3 2x x
 as the sum of two partial fractions with linear denominators. 

  

 Solution 

 Firstly, we factorise the denominator 
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 
   2

4 4

3 2 (1 )(3 )x x x x
 

The next step is the crucial one; we assume that this can now be expressed as two 

fractions of a specific form, and write 

 
   

4
 

(1 )(3 ) 1 3

A B

x x x x
 

where A and B are constants and ,  0A B .  We use the equivalence sign,  , to express the 

idea that whatever value x is, the left-hand side of this expression will take the same value 

as the right-hand side.  They are equivalent.  Because they are equivalent, we can 

recombine the right-hand side into a single fraction thus 

     
  

     
(3 ) (1 ) 3

1 3 (1 )(3 ) (1 )(3 )

A B A x B x A Ax B Bx

x x x x x x
 

So the original fraction must be equivalent to this 

  


   
4 3

(1 )(3 ) (1 )(3 )

A Ax B Bx

x x x x
 

Here the denominators are the same, so the numerators must be equivalent. 

    4 3A Ax B Bx  

 or 

   4 ( ) 3A B x A B  

The right-hand side of this is true for all values of x, but the left-hand side is a constant 

function; we could write the left-hand side as 

4 0x  

So the coefficients of the x terms on both sides must be equal, and so must the 

coefficients of the constant terms.  We call this process equating coefficients. 

 
 

 

 

0 1

3 4 2

A B

A B
 

Now these are just two simultaneous equations in two unknowns and we can solve them 

as follows 

  

 
 
   

1

3 4

3 4

4 4 1

A B

A B

A A

A A B

 

So finally the solution is 

 
   

4 1 1

(1 )(3 ) 1 3x x x x
 

 

This is a simple example, but all the other examples follow essentially the same technique; one 

just needs to recognise the different kind of factors in the denominator and to learn what to do 
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with each.  But firstly we will introduce another technique that can simplify the working of the 

solution. 

 

 

The Cover-up Rule 
 

This is a labour-saving device.  Let us take a second example. 

 

Example (2) 

Express 
2

7 5

2

x

x x


 

 as the sum of two partial fractions with linear denominators. 

 

 Solution 

 The solution proceeds as in the first example. 

   

   
   
   

 


   

 
 

  


 

2

7 5 7 5

2 1 2

1 2

2 1

1 2

x x

x x x x

A B

x x

A x B x

x x

 

 

Therefore, on equating coefficients 

       7 5 2 1x A x B x  

It is at this point that we apply the cover-up rule.  This works on the principle that since 

this expression is true for all values of x, we can “cover-up” one of the coefficients by a 

clever substitution.  Thus, on letting x = 2 we get 

        




7 2 5 2 2 2 1

9 3

3

A B

B

B

 

The clever substitution has removed the coefficient A, so we can skip the tedious process 

of solving the simultaneous equations.  To find A we let  1x , then 

  


12 3

4

A

A
 

 

The technique begins in the same way, but rather than form simultaneous equations in the terms 

A, B, … by equating coefficients, we substitute values of x that make some of these terms 

disappear. This is why the method is called the “cover-up” rule, because we effectively substitute 

values that “cover-up” some of the linear factors.  However, the need to solve simultaneous 

equations cannot always be eliminated.  We should also note that at a certain point in the 
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technique we change from the use of an equivalence () to the use of an identity (=) because we 

start to equate numbers rather than functions. 

 

 

 

What to do with each different type of factor 
 

The starting point for the technique is to factorise the denominator and then write the rational 

function as a sum of fractions involving these factors.  We get an expression of the form 

 
 

   
   
   

2
f x

x x ax bx c
 

but we need to know how to fill in the spaces represented by the dots here.  The answer to this 

question is merely a set of rules.  

 

Linear factors of the form  x  

For each linear factor of the form (x - ) in the denominator, write 


A

x
 

in the sum where  (that is,  is a real number)A A  

 

Linear factors of the form   2
x  

For each linear factor of the form   2
 in the denominator writex  

  


 
2

A B

x x
 

Two terms are needed because       
2

( )( )x x x  comprises two factors and each factor 

generates one coefficient.  We cannot write 


A

( )x
 twice, and it turns that the second factor in the 

sum takes the form 


 2( )x

. 

 

Quadratic factors of the form  2ax bx c  

For each quadratic factor  2ax bx c  in the denominator write 


 2

Ax B

ax bx c
 

in the sum. 

 



 
 

© blacksacademy.net 
 

6 

The technique for finding terms A, B, … is by reforming the sum of the partial fractions into a 

single fraction over one denominator.  Then coefficients in the numerator are equated, and a 

series of simultaneous equations in the unknown quantities, A, B, … are generated and solved.  

The cover-up rule may help to simplify the algebra.  It is a straightforward technique best learnt 

through examples. 

 

Example (3) 

Express 
   
  
 

2

2

13

4 1

x x

x x
 as the sum of partial fractions. 

  

Solution 

   
     

   

   
 

  

   


 

2

22

2

2

13

4 14 1

1 4

4 1

x x Ax B C

x xx x

Ax B x C x

x x

 

Therefore 

            2 213 1 4x x Ax B x C x  

   
 

1 15 5

3

x C

C
 

     


0 13 12

1

x B

B
 

      

 


2 19 2 1 24

5 2 1

2

x A

A

A

 

Hence 

   
   

 
  

2

22

13 2 1 3

4 14 1

x x x

x xx x
 

 

Example (4) 

Express 
   

 

 

2

2

5 5

2 1

x x

x x
 as the sum of partial fractions. 

 

Solution
 

     
       

   

 
  

   

     


 

2

2 2

2

2

5 5

2 12 1 2

2 1 1 2

2 1

x x A B C

x xx x x

A x x B x C x

x x
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               

  


    
 

      
  


22 5 5 2 1 1 2

2 9 3

3

1 9 9

1

0 5 2 3 4

4 2

2

x x A x x B x C x

x B

B

x C

C

x A

A

A

 

       
 

  
   

2

2 2

5 5 2 3 1

2 12 1 2

x x

x xx x x
 

 

It may also be necessary to decompose a rational function in the case where the numerator 

exceeds the denominator.  In such cases one simply applies the technique of polynomial division 

to divide the denominator into the numerator.  The remainder is then decomposed into further 

partial fractions as required. 

 

Example (5) 

Decompose 
  

 

3 2

2

2 11 8

2 3

x x x

x x
 in the sum of partial fractions. 

 

Solution 

Here the numerator,   3 22 11 8x x x , is a polynomial of degree larger than the 

denominator, so we begin with polynomial division. 


    

 

 

 

2 3 2

3 2

2

2

4
2 3 2 11 8

2 3

4 8 8

4 8 12

4

x
x x x x x

x x x

x x

x x

 

Hence 

3 2

2 2

2 11 8 4
4

2 3 2 3

x x x
x

x x x x

  
  

   
 

Then 

   
   2

3 14

2 3 1 3 1 3

A x B xA B

x x x x x x

  
  

     
 

 Whence by the cover-up rule or otherwise, 1, 1A B    and 

3 2

2

2 11 8 1 1
4

2 3 1 3

x x x
x

x x x x

  
   

   
 

 


