Recurrence relations

Introducing recurrence relations

Example

A investor deposits $£ 1000$ in a bank account at 8% interest per annum. How much money will he have after 6 years?

Solution

To solve this problem by the "long" way, we add 8% of the value of the previous year to the value of the previous year, or, equivalently, multiply the value of the previous year by 1.08 .

Let $u_{r}=$ the value of the investment after the r th year.
Then $u_{0}=$ the initial investment (called the principal) $=1000$
$u_{1}=$ the value after one year $=1000 \times 1.08=1080$
$u_{2}=u_{1} \times 1.08=1080 \times 1.08=1166.4$
$u_{3}=u_{2} \times 1.08=1166.4 \times 1.08=1259.712$
$u_{4}=u_{3} \times 1.08=1259.712 \times 1.08=1360.48896$
$u_{5}=u_{4} \times 1.08=1360.48896 \times 1.08=1469.328077$
$u_{6}=u_{5} \times 1.08=1469.328077 \times 1.08=1586.874323$
$u_{6}=1586.87($ to the nearest penny $)$

This is an example of a recurrence relation - that is, a relation where the value at one stage of the computation is calculated in terms of one more values at earlier stages.

The recurrence relation here is
$u_{r+1}=u_{r} \times 1.08$

That is, the value of the investment at the end of the $(r+1)$ th year is given by the value at the end of the r th year $\times 1$.

There is a "shorter" method of finding the solution to this problem, expressed by the relation
$u_{r}=u_{0} \times(1.08)^{r}$

That is,
$u_{6}=1000 \times(1.08)^{6}=1586.874323=1586.87$ (to the nearest penny)

This topic is concerned with finding these "short-cut" solutions to problems that are expressed in terms of recurrence relations. We may express this solution to this problem in general terms as

Given the recurrence relations
$u_{r}=u_{0} \times k$
Then
$u_{r}=u_{0} \times k^{r}$

Example

Write down the recurrence relation corresponding to the following situation: an investor deposits $£ 1000$ in a bank account at 8% interest per annum. At the end of each year he adds a further $£ 300$ to his deposit.

Solution
The expression for the recurrence relation in this case is

$$
u_{r+1}=1.08 u_{r}+300
$$

Classification of recurrence relations

The order of a recurrence relation

The order of a recurrence relation is the difference the highest and lowest subscripts of the terms used in the relationship. For example, in the relationship
$u_{r+1}=4 u_{r}-5$
the difference between the highest subscript, u_{r+1}, and the lowest subscript, u_{r} is $(r+1)-r=1$
so the order of the recurrence relation is 1 .
© blacksacademy.net

In the relationship
$u_{r+1}=u_{r}+2 u_{r-1}+2$
the difference between the highest and lowest subscript is
$(r+1)-(r-1)=2$
therefore the order of the relation is 2 .

Linear and non-linear recurrence relations

A recurrence relation is linear if the coefficients in the relation are not functions of the previous values of the relation. In other words, in the relation
$u_{r+1}=a_{r} u_{r}+b_{r} u_{r-1}+c_{r} u_{r-2}+\ldots .+k_{r}$
the coefficients, a_{r}, b_{r}, c_{r} may be functions of r by they may not be functions of any of the terms $u_{r}, u_{r-1}, u_{r-2}, \ldots .$.

A recurrence relation that does not satisfy this condition is said to be non-linear.

Linear, constant-coefficient recurrence relation

This is a linear recurrence relation where the coefficients are constants - that is, they are not functions of r.

Homogenous and non-homogeneous
If the term k_{r} in the linear recurrence relation
$u_{r+1}=a_{r} u_{r}+b_{r} u_{r-1}+c_{r} u_{r-2}+\ldots .+k_{r}$
is 0 , then the relation is said to be homogenous. When k_{r} is not 0 , then the relation is non-homogeneous.

Thus, for example, the recurrence relation $u_{r+2}=u_{r-1} \times u_{r-2}$ is not linear; the recurrence relation $u_{r}=r^{2} u_{r-1}$ is linear but not constant coefficient and $u_{r+1}=u_{r}+2 u_{r-1}+2$ is second order, linear and constant coefficient, but it is nonhomogeneous. The relation $u_{r+1}=u_{r}+2 u_{r-1}$ is second order, linear, constantcoefficient and homogenous.

Solution of first-order, constant-coefficient linear recurrence relations

First-order, constant-coefficient, linear and homogeneous recurrence relations

These are of the form
$u_{r+1}=a u_{r}$
This is the simplest form of recurrence relation, and its solution is
$u_{n}=a^{n} u_{0}$
where u_{0} is the initial value.

Example

A recurrence relation is given by
$u_{r+1}=3 u_{r}$
If the initial value is 6 , find u_{7}
Solution

$$
u_{n}=a^{n} u_{0}
$$

Here $a=3, u_{0}=6$, hence,

$$
u_{n}=6 \times 3^{7}=13122
$$

The proof of the formula depends on knowledge of mathematical induction. As this knowledge is not assumed here, this is left to another chapter.

Even more generally, the first-order, linear, constant-coefficient, homogeneous recurrence relation
$u_{r+1}=a u_{r}$
has general solution
$u_{n}=B \times a^{n}$
where B is a constant
© blacksacademy.net

The value of the constant for a particular solution is found by substituting a particular value for which u_{n} is known.

First-order, constant-coefficient, linear and inhomogeneous recurrence relations

These have general form

$$
u_{r+1}=a u_{r}+k
$$

and has general solution
$u_{n}=B a^{n}-\frac{k}{a-1} \quad$ if $a \neq 1$
and

$$
u_{n}=A+n k \quad \text { if } a=1
$$

Example

Find the general solution to the recurrence relation

$$
u_{r+1}=3 u_{r}-2
$$

and the particular solution if $u_{0}=2$.
Solution
The general solution is

$$
u_{n}=B a^{n}-\frac{k}{a-1}
$$

where $a=3$ and $k=-2$
hence,

$$
u_{n}=B 3^{n}-\frac{(-2)}{3-1}
$$

Therefore,
$u_{n}=B 3^{n}+1$

To find the particular solution we substitute, $u_{0}=2, n=0$ to obtain
© blacksacademy.net

$$
\begin{aligned}
& 2=B 3^{0}+1 \\
& B=1
\end{aligned}
$$

Hence,
$u_{n}=3^{n}+1$
is the particular solution.
The proof of the formula for first-order, constant-coefficient, linear and inhomogeneous recurrence relations requires knowledge of geometric progressions. As that is not assumed here, it is left to another chapter.

Linear, second-order recurrence relations

A linear, second-order, constant-coefficient homogeneous recurrence relation has the form
$u_{r+1}=a u_{r}+b u_{r-1}$
where a and b are constants.
To solve this, form the auxiliary equation
$m^{2}=a m+b$
Rearrange it to give
$m^{2}-a m-b=0$
Solve this quadratic equation to give roots λ and μ.
Then, the solution will depend on the number and type of roots. If
(1) There are different roots, so that $\lambda \neq \mu$, then
$u_{n}=A \lambda^{n}+B \mu^{n}$
where A and B are constants.
(2) There is one single roots, so that $\lambda=\mu$

Then the solution is
$u_{n}=(A+B n) \lambda^{n}$
© blacksacademy.net
(3) There are no real roots, but complex roots, then the auxiliary equation as two complex, conjugate roots which can be written in polar form
$\lambda=r(\cos \theta+i \sin \theta)$ and $\mu=r(\cos \theta-i \sin \theta)$
Then the general solution to the recurrence relation is
$u_{n}=r^{n}(A \cos n \theta+B \sin n \theta)$
where A and B are constants.

Example

Find the particular solution to the recurrence relation
$u_{r+1}=6 u_{r}-8 u_{r-1}$
when $u_{0}=4$ and $u_{1}=6$
The auxiliary equation is
$m^{2}=6 m-8$
or
$m^{2}-6 m+8=0$
with solution
$(m-4)(m-2)=0$
giving
$\lambda=4, \mu=2$
Hence, since there are different roots, so that $\lambda \neq \mu$, then $u_{n}=A \lambda^{n}+B \mu^{n}$ and $u_{n}=A 4^{n}+B 2^{n}$
To find the particular solution, we substitute $u_{0}=4, n=0$ and $u_{1}=6, n=1$ in turn
$4=A+B$
$6=4 A+2 B$
Solving these two equations simultaneously
$(1) \times 2$ gives $\quad 8=2 A+2 B$
$(2)-(3) \quad-2=2 A$
$A=-1$
$B=5$
Hence, the particular solution is
$u_{n}=-4^{n}+5 \times 2^{n}$
© blacksacademy.net

Example

Solve the recurrence relation
$u_{r+1}=2 u_{r}-2 u_{r-1}$
with initial conditions,
$u_{0}=1, u_{1}=\sqrt{2}$
The auxiliary equation is
$m^{2}=2 m-2$
$m^{2}-2 m+2$
with solution
$\lambda, \mu=\frac{2 \pm \sqrt{4-8}}{2}=\frac{2 \pm 2 i}{2}=1 \pm i$

Hence, $r=\sqrt{1^{2}+1^{2}}=\sqrt{2}$
$\theta=\tan ^{-1}(1)=\pi / 4$
Therefore,
$\lambda, u=\sqrt{2}(\cos \pi / 4+i \sin \pi / 4)$
And so,
$u_{n}=(\sqrt{2})^{n}(A \cos n(\pi / 4)+B \sin n(\pi / 4))$
$u_{n}=(\sqrt{2})^{n}(A \cos n(\pi / 4)+B \sin n(\pi / 4))$
© blacksacademy.net

To find the particular solution, we substitute $n=0, u_{0}=1$ and $n=1, u_{1}=\sqrt{2}$, then
$1=(\sqrt{2})^{0}(A \cos 0(\pi / 4)+B \sin 0(\pi / 4))$
$A=1$
and
$2=(\sqrt{2})^{1}(A \cos \pi / 4+B \sin \pi / 4)$
$2=\sqrt{2}\left(\frac{1}{\sqrt{2}}+B \frac{1}{\sqrt{2}}\right)$
$2=1+B$
$B=1$
Thus, the particular solution is
$u_{n}=(\sqrt{2})^{n}(\cos n(\pi / 4)+\sin n(\pi / 4))$

